

Search Matters 2016

The EPO pre-search framework

Agenda

- 1. Background of pre-search
- 2. The pre-search algorithms
- 3. Input for pre-search algorithms
- 4. The bibliographic search
- 5. The class-based search
- The term based search
- 7. Presentation of the results from pre-search
- 8. Evaluation of the pre-search algorithms
- 9. Working with results of an automated search
- 10. Future of pre-search
- 11. Conclusions

Background of pre-search - 1

- § What do the EPO Guidelines say about pre-search?
 - A pre-search algorithm creates a list of documents to be inspected is created: automated search!
 - Pre-search triggered by creation of European Search Report, European Search Opinion or Rule 62a and/or 63(1) EPC clarification request

November 2015

Guidelines for Examination in the EPO

Part B - Chapter IV-1

Chapter IV – Search procedure and strategy

1. Procedure prior to searching

Upon creation of a European search report, a European search opinion or a clarification request under Rule 62a and/or 63(1), a generating a list of documents to be inspected by the examiner is triggered. This creates a marker which serves as evidence in the file that the Search Division has started the search. The date of the start of the search is relevant for a possible refund of the search fee in case the application is withdrawn, refused or deemed to be withdrawn (see A-X, 10.2.1).

Background of pre-search - 2

- § **Primary objective**: to retrieve
 - Relevant prior art under Article 54(2) EPC
 - (Un)published co-pending applications, prior art under Article 54(3) EPC
- § Secondary objective: to gather information useful to the examiner
 - CPC, IPC, FI/FT-classes potentially relevant for the search
 - Potentially relevant terms/passages from the application
 - Work in progress
- § Pre-search puts the examiner in a favourable position at the start of the search
- § Search can be re-focused after assessing pre-search results
 - Pre-search increases the speed and quality of search

The pre-search algorithms

- § Several algorithms used!
 - By default, pre-search is fully automatic- no user input is needed
- § Citation retrieval
 - Applicant citations
 - Citations from ISA
 - Citations from other Patent offices
 - Documents citing the application
 - Use of the One Portal Dossier for citations from the IP5 Offices
 - NPL citations included
- § Bibliographic search
- § Class-based search
- § Term-based search

Input for pre-search algorithms - 1

Input for pre-search algorithms - 2

(54) Method for executing a menu in a mobile terminal and mobile terminal using the same

(57) The present disclosure is related to a method for executing a menu in a mobile terminal, the method comprising; inputting (S2) a drawing pattern (1-9) on a touch screen of the mobile terminal; displaying a menu corresponding to the drawing pattern and a sub menu thereof on the touch screen by comparing (S3) a prestored drawing pattern table with the drawing pattern; and executing (S6) the sub menu by selecting the sub menu and a mobile terminal thereof.

Term-based search

Citation retrieval

Patent documents cited in the description

RR 1020090050280 [0001]

FIG. 7

The bibliographic search

- § Implemented as the APDEX algorithm (developed by A. Materne)
- § Uses bibliographical information as search input
 - Inventor names
 - Applicant
 - Representative
- § Will retrieve prior art from same applicant/inventors
 - Co-pending (un)published applications
 - Article 54(3) EPC documents
 - Documents relevant to the right to priority for the application

The class-based search

- § Implemented as the FTRK algorithm (developed by A. Materne)
- § Directed to Japanese prior art
- § Uses F-terms and FI-classes of any Japanese family member of the application as search input
- § Will retrieve Japanese prior art having a Japanese classification similar to the application
- § Work in progress:
 - Generalisation of class-based search
 - Extension to CPC-classes, IC-classes....

The term-based search

- § Implemented as the **Ansera-MLT**, **PS1** (developed by Y. Kingma) and **XFR** (developed by A. Materne) algorithms
- § Extracts terms or combination of terms from abstract, claims and/or description as search input
- § Will retrieve prior art disclosing these terms, *ranked* in an order of potential relevance
- § Ansera-MLT and PS1 extracts and searches for individual terms, and implements inverse document frequency ranking
- § XFR extracts and searches for combinations of terms, and implements Horváth-Materne ranking

Presentation of the results from pre-search - 1

- § Pre-search is triggered at the start of the search
- § When pre-search has finished (<5 minutes), the results (on average 47) are
 presented to the Examiner in the Viewer in a dedicated drawer
 </p>

Presentation of the results from pre-search - 2

§ The pre-search results are ranked according to potential relevance:

- § The examiner can therefore study the most relevant documents first
- § But how can we know which documents are the most relevant?

- § After each run of pre-search, the publication numbers provided by presearch are stored, as well as name of the algorithm(s) that found the document
- When the examiner drafts the search report, the publication numbers of the
 documents cited are stored as well and compared to the pre-search
 results
- § The documents cited in the search report are the gold standard
- § This information enables us to evaluate
 - the efficiency of the pre-search algorithms
 - the ranking of the results of the pre-search algorithms

NB: Only patent publications taken into account for this evaluation!

- § Evaluation of ranking for Ansera-MLT in pre-search- better ranked documents have higher chances of being cited in Search Report!
- § Proof of concept for pre-search ranking

Rank of document

- § Working with automated search tools might be challenging for the user
- § In the classical Boolean database search, the examiner "knows" why each document was included in the result set:
 - Example: Searching for all documents classified under G06F3/044/IC disclosing the term "proximity" in the WPI abstract
- § Problem: This does not apply for an automated search
 - "Why was this prima facie irrelevant document returned by pre-search?"
 - Might cause confusion and decreased trust in the automated search tools
 - Worst case scenario: User feels the need to study irrelevant document in more detail -> loss of time

- § Proposed solutions based on **EPO experience with pre-search**:
 - The user should have studied the application very carefully before evaluating any results from the automated search
 - Knowledge gives power to avoid wasting time on irrelevant prior art
 - The users readily accept and appreciate automated search, but they will always be curious: "Why was this document returned?"
 - The automated search tool should thus be able to inform the user in detail about the origin of each document in the result set:
 - Was the document cited by the applicant/ISA/USPTO?
 - Category of citation? For which claims?
 - Search terms used for term-bases search tools

- § The usefulness of an automated search will depend on many factors, including
 - Technical field of application
 - Complexity of application
 - The needs and taste of the individual user
- § Possible solution:
 - Application-dependent settings for the automated search based on previous experience, "fine-tuning" - work in progress
 - Give the users some control of pre-search settings

- § How many documents should an automated search return?
 - Depends on
 - Potential usefulness of the results
 - Time needed to study each document
 - Complexity of prior art
 - Functionality of document viewing software
- § Reasonable number: **50 documents** (**EPO experience with pre-search**)
 - Balance between precision/recall of result
 - The user should be able to control the amount of results

- § Do the users accept/appreciate working with pre-search?
 - Some initial reluctance
 - Typical question a few years ago:
 - "Why do these documents appear in my working list?"
- § With more experience and knowledge, attitudes change
 - Typical question today:
 - "Why were no results returned from Ansera-MLT for my application?"
- § Automated search via pre-search has become an integral part of the work of the EPO examiner

Future of pre-search

- § Constant improvements of algorithms
 - The effect of any changes can be evaluated automatically
- § Optimize **number of documents returned** by pre-search
 - Quality of results estimated
 - Number of documents returned adjusted accordingly
- § Extending pre-search to **non-patent literature**
 - Highly important for certain technical fields
- § Improve **presentation** of results to user
 - Ensure that examiner is able to understand why documents were found by pre-search
- § Let pre-search provide more additional information to the user
 - CPC, IPC, FI/FT-classes potentially relevant for the search
 - Potentially relevant terms/passages from the application

Conclusions

- § The EPO pre-search framework provides the examiner with prior art found by several different state-of-the-art algorithms
- § The automatic evaluation of the efficiency of the algorithms puts the EPO in a favourable position to improve pre-search
- § Automatic search brings many benefits to the search professional
 - but some care should be taken when working with results from an automated search
- § Potential for future improvements is great
 - In the future, the role of the automated search will be even more important than today