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In this project, that has been financially-supported by the Academic Research Program (ARP) 
of the European Patent Office (EPO), following the evolutionary concept of technological 
trajectories (Dosi, 19821) and building upon the literature that proposes computational tools 
to identify such trajectories in patent citation networks (e.g., Hummon & Doreian 19892, 
Nomaler & Verspagen 20163), our primary objective was to map the entire contents of EPO 
patents and patent citations in PatStat. The resulting map of trajectories which we may refer 
to as a ‘Universal Network of Main Paths’ (UNMP) can be interpreted as a (historical) 
cartography of all main technological trends (‘trajectories’) and their interactive 
relationships of a cumulative nature.  
 
While such a universal cartography of all technologies altogether will allow researchers and 
other stakeholders to understand the main trends of progress in any selected field of 
technology in relation to that in all other related fields, a second pillar of our project was to 
provide a ‘proof-of-concept’ in a particular ‘macro’ field of technology (i.e., a set of distinct 
technology fields related by a coherent overall goal). Given the enormous societal relevance, 
the macro field of technology we opted for was the so-called ‘Greentech,’ as captured by the 
Y02 tagging scheme4 that adds to the existing CPC classification system a new set of codes 
indicative of a patent’s contribution to climate change mitigation.  
 

 
1 Dosi, G., (1982), “Technological paradigms and technological trajectories: a suggested interpretation of the 
determinants and directions of technical change”, Research Policy, vol. 11(3), pp.147-162. 
2 Hummon, N.P. & P. Doreian, (1989), “Connectivity in a citation network: The development of DNA theory”, 
Social Networks, vol. 11: 39-63. 
3 Nomaler, Ö. & B. Verspagen, (2016), “River deep, mountain high: of long run knowledge trajectories within 
and between innovation clusters”, Journal of Economic Geography, vol. 16, pp. 1259-1278 
4 The much-appreciated outcome of collaboration between EPO, United Nations Environmental Program 
(UNEP) and the International Centre on Trade and Sustainable Development (ICTSD). 



The main motivation of our second pillar was to provide insights into the nature of climate 
change mitigating technologies. How these technologies emerge, e.g., in terms of which 
technologies are at its basis, whether they emerge as a coherent set of specialized 
technologies developing within their own internal dynamics, or whether they emerge as 
adaptations at the fringe of non-cleantech? We also aimed at looking at the role of path 
dependency in the field of cleantech and whether Greentech trajectories develop in 
geographical isolation, or rather as the outcome of collective international effort. 
 
Shortly, our goal was both to contribute to a more sophisticated use of large patent databases 
by providing new uses for the data, and to a better understanding of the technologies that 
will be needed for stimulating global sustainable development. As of the end date of our 
project, we can summarize our achievements as follows. 
 

1) On the basis of several improvements on existing methods, we developed a new 
algorithm5 that extracts the UNMP out of any given PatStat edition. 

2) In addition to the extraction of the UNMP, our algorithm also introduces a new 
indicator of ‘significance’ (e.g., value) for an individual patent on the basis of its 
centrality in the universal citation network. 

3) The algorithm was run on the 2019 spring edition of PatStat. The resulting UNMP of 
the citation network has been made publicly available as a database (comma-
delimited text file which can be built into a relational table under any database engine. 
See the Appendix 1 for a snapshot). The database contains all information on 
application id of the UNMP nodes (i.e., patent documents), all trajectories the node 
belongs to, and which position it takes on each trajectory. The database, which can be 
linked to PatStat by patent’s unique application id (appln_id) to obtain other patent 
meta-data information, can be downloaded at  
https://dataverse.nl/dataset.xhtml?persistentId=hdl:10411/ZDCQY3.  

4) The analysis of the UNMP in the particular context of Greentech (and in relation to 
non-Greentech which we conveniently refer to as Browntech) led to two research 
papers. The papers are downloadable respectively at 
https://www.merit.unu.edu/publications/wppdf/2019/wp2019-052.pdf and 
https://www.merit.unu.edu/publications/wppdf/2021/wp2021-005.pdf. 

5) In a nutshell, our findings strongly indicate that that, especially for policy-related 
concerns, progress in Greentech cannot be understood independently of 
developments in non-Greentech technologies 

 
 

Through the rest of this document, we provide a summary of our main findings, the 
conclusions and the policy implications that follow.  
 
For the convenience of interested readers, the two research papers are also attached 
to the end of this document. 
 

 
 

5 The algorithm was implemented exclusively in Microsoft® T-SQL variant of the Structured Query Language.   

https://dataverse.nl/dataset.xhtml?persistentId=hdl:10411/ZDCQY3
https://www.merit.unu.edu/publications/wppdf/2019/wp2019-052.pdf
https://www.merit.unu.edu/publications/wppdf/2021/wp2021-005.pdf


1. Research paper #1: Greentech homophily and path dependence in a large patent 
citation network 

The first paper introduces in detail our (improved) method of identifying the UNMP of all 
patents applied for at EPO. Our algorithm identified about 3.7 million significant trajectories6 
each connecting some subset of a total of about 2.8 million patents. The length of these 
trajectories varies between 2 and 28.7  On only 18% of the trajectories we find at least one 
(or more) Green patent.8 We refer to this subset (of about 664 thousand) as the ‘Green 
trajectories’ although only a fraction of them (about 44 thousand) are purely Green. That is, 
the majority of our Green trajectories contain some mixture of both Green and Brown 
patents9 showing up in varying proportions (see Appendix 2 for a complete breakdown) and 
many different patterns of order of appearance. For example, in the total of 357 thousand 
trajectories of length 6, we find that 292 thousand are purely Brown, about 3 thousand are 
purely green, while there are 1,731 where three Brown patents are followed by three Green 
patents, 755 where three Green patents are followed by three Brown patents and 525 where 
we observe three Green patents with three Brown ones in other (less polarized) order of 
appearance.  
 
How will these observations help us understand the extent to which we could refer to 
Greentech as a coherent/specialized set of technologies that develop within their own 
technological dynamics independently of Browntech? On the one extreme, if we observed 
only purely Green and purely Brown trajectories, we could speak of complete specialization. 
On the other extreme (and given that only 6.9% of all EPO patents are tagged as Green), if we 
observed that through all trajectories the propensity of a patent to cite a Green patent was 
6.9% independently of the color of the citing patent, we would easily conclude that 
Greentech and Browntech were inseparable, mutually co-evolving domains. However, we 
did not observe these two extremes. The actual case was somewhere in between.     
 
Accordingly, we ventured into the question of the ‘coherence’ of Greentech on the basis of 
the concept of ‘homophily’10 which we define as the tendency of Green patents to follow 
other Green patents immediately through a trajectory, and the tendency of Brown patents to 
follow other Brown patents immediately. We observed that only about 3% of the citations of 
Brown patents go to Green patents (which is even less than 6.9%, indicating strong Brown-
to-Brown homophily), while about 50% of the citations of Green patents go to Green patents 
and the other half to Brown (thus neither Green homophily nor heterophily, but absolute 
indifference). Accordingly, we developed a number of statistical models incorporating the 
notion of homophily and tested their relative explanatory power (against the purely 

 
6 The original network has 9,090,460 citation links, through which one can enumerate possibly billions of 
trajectories. By pruning 5.5 million of these citation links (ending up with only 3,494,708), while keeping all 
the patents of the original network, our algorithm extracts out of the billions only the ‘most significant’ 3.7 
million trajectories. 
7 Path length 2 (shortest possible) is the most frequent one (about 525,000 paths). 28 is the longest path length, 
but there are very few (14) paths of this length. 
8 i.e., a patent that is tagged as Green by a Y02 CPC code. 
9 i.e., patents that are not tagged as Green by a Y02 CPC code. 
10 We adopt the concept, which is a form of ‘preferential attachment’ from the literature on ‘social networks.’ 



stochastic model of no homophily11) in explaining the patterns of Green-Brown co-presence 
in all trajectories we identified.  The homophily model was by far the winner. 
 
The baseline homophily model was enriched further by explaining the determinants of 
homophily conditional on the order of appearance (of Green and Brown) on individual 
trajectories. Our first candidate was path dependence which we define as the color of impact 
of upstream (occurring before the cited patents) on whether or not a citation is made by a 
Green patent. We found that the higher the share of the Green patents that lie upstream of a 
citation, the larger was the probability that the citing patent is Green, indicating that that 
trajectories that start off with green patents tend to remain green and vice versa.  
 
Furthermore, we observe that various dimensions of proximity (be it technical, sectoral, 
intertemporal or geographical) significantly contribute to homophily. For example, we 
observe that the lower the time difference between the application dates of a pair of patents 
that show up immediately next to each other on a trajectory, the higher the likelihood that 
they are both Green, or both Brown. Similarly, if two consecutive patents on a trajectory have 
inventors from the same (or immediately neighboring countries), and/or if they are 
associated with the same NACE sector12, they are more likely to have the same color. This 
implies that to some extent, but only to some extent, there is sectoral and geographical 
coherence in which progress in Greentech is decentrally organized. 
  
These findings imply that the macro-technology field of Greentech is characterized, at least 
to some extent, by a specific knowledge base of its own that does not apply in the 
overwhelmingly Brown parts of the UNMP. In other words, the development of Greentech 
has been a matter of developing and applying a specific knowledge base, rather than of 
“greening” Brown domains without specific knowledge of Greentech. To the extent that this 
is reflected in homophily, it is mainly the result of Brown-to-Brown homophily, which we 
observe to be very strong, rather than of Green-to-Green homophily, which is weaker (the 
tendency of Green patents to follow Green patents is weaker than the tendency of Brown 
patents to follow Brown patents.   
 
The concentration of Green (and Brown) patents that results from homophily and path 
dependence has implications for policy makers who want to “green” the economy. It means 
that for green technology to emerge at a substantial scale, there needs to be investment in 
the green knowledge base. This will be associated with fixed costs, e.g., investment in 
academic study programs, public labs, etc. As individual firms may not be able to make these 
investments, there may be coordination failure that warrants public policy.  
 
As a side note, we also conjecture that knowledge about the structure of our UNMP may also 
help patent offices eventually to improve the algorithms used to implement Y02 tagging, and 
that our new patent significance indicator may introduce new perspectives for the literature 
that aims at estimating ‘patent value’ on the basis of meta-data.    

 
11 i.e., the model that is based on the 6.9% citation propensity to a Green patent independently of the color of 
the citing patent, thus the baseline model that presumes no coherence in Greentech. 
12 In terms of the concordance information provided in PatStat. 



2. Research paper #2: Patent Landscaping using ‘green’ Technological Trajectories 

In our second paper, we shift our attention from homophily (defined in terms of the Green-
Brown dichotomy and the complementarities thereof) to a detailed analysis of the patterns 
of heterophily. In other words, we ask, to what extent Greentech development benefits from 
geographical and technological (i.e., as captured by IPC codes) diversity.  
 
Figure 1 below shows an example of such diversity on an actual trajectory that spans the 
time period 1979 to 2012, comprising 12 patents (4 Brown followed by 8 Green patents) as 
contributed by inventors from six countries in seven different (4 digit) IPC codes. Looking at 
the patent titles, we observe the evolution of the usage of continuous variable transmission 
(CVT) systems, into electric and hybrid vehicles. It is indeed well-known that CVT systems 
that were originally developed (around late 1950s) for vehicles with a single combustion 
engine (clearly, Browntech), have provided the basis for the design of more sophisticated 
systems (e.g., Electric Variable Transmission, e-CVT) that were able to apply power from 
multiple sources of actuation to one output, such as a hybrid vehicle (Greentech) which has 
both a combustion engine and an electric motor (and in some cases also a flywheel). This 
trajectory nicely captures a snapshot of this main trend. 
 
 

 
Figure 1. An actual example of a green trajectory. An arrow indicates a direct citation. 

 
In order to analyze the patterns in diversity in the entire set of Green trajectories, we build 
a network from the database of green technological trajectories. The network is based on 
‘co-occurrence’ on the green trajectories. The nodes in our network are either combinations 
of green/brown and 4-digit IPC code, or combinations of green/brown and country of origin 
of the patent. In the first case, a node could, for example, be brown patents in class F16H, or 
green patents in class F01D. In the second case, we could have nodes like green patents from 
Germany, or brown patents from Japan. The networks are visualized using the LinLog 
method. In both cases (IPC classes or countries), we obtain sensible maps of the green 
technological landscape, which outline the relatedness between green technology sub-parts.  
 
 



We argue that our landscaping method based on relations between technological fields that 
are extracted from technological trajectories fits the aim of outlining main technological 
trends better than methods that are merely based on individual patents or patent citation 
pairs. The reason is that the technological trajectories in our method are aimed at 
summarizing technological trends, and hence they are the most logical building blocks for 
mapping these trends. We look at the maps that we build as a proof-of-concept, and suggest 
that future patent landscaping work considers using trajectory-based metrics. 
 
A common feature between the network based on IPC codes and the one based on countries 
is that brown nodes play a very important role in the network. In both cases, the nodes that 
are most central, are the brown nodes. This is in line with conclusions from our first paper 
of this project, and implies that progress in Greentech cannot be understood independently 
of developments in non-Greentech technologies.  
 
In the network that uses IPC codes (see Figure 2 below), we observe a number of very broad 
fields that transcend Greentech as such, as well as technological areas that are clearly key to 
Greentech. The main examples of the first type of fields (general) are ICT and electrical, and 
health and medical. These are broad technological areas that serve goals that are not 
necessarily related to (the popularly-known domains of) Greentech, but they show up as 
major parts of the Greentech field in our maps. 
  
The IPC-based map is broadly divided in one half that contains electricity-based 
technologies, and another half that has no direct relations to electricity. The electricity-based 
part includes the large ICT and electrical cluster, but also batteries electric motors and 
electric or hybrid mobility technologies, as well as power generation and distribution 
technology. In the non-electrical part of the map, the health/medical cluster is a large one, 
but we also find a large cluster with technologies aimed at reducing, controlling and 
capturing emissions and exhaust. In each cluster, we find a number of Brown technologies 
that occupy central positions, indicating a key role in integration. 
 
In the geography (country) based map (see figure 3 below), we find that location is the main 
dividing line. This map contains three large areas. One of these contains mostly countries 
outside Europe, with the US and Japan as the largest nodes. The other clusters are Europe-
centered. All of these clusters contain a significant number of brown nodes. 
 
We also produced separate maps for trajectories of different lengths, and we observe a large 
similarity between those and the maps for all trajectories. Differences are largest for the 
maps based on the longest trajectories. In the geography-based map with longest 
trajectories, the divide changes from geography-based to brown/green-based. In other 
words, the major divide in the geography network of longest trajectories is between green 
and non-green technologies, instead of Europe-non-Europe. In the IPC-based map with 
longest trajectories, the two general clusters (ICT and health/medical) remain clearly visible, 
but a number of typical green technologies, such as electric cars and wind power, vanish 
from the network. These technologies have not yet accumulated the long trajectories that 
are found in this network. 
 



 
Figure 2. Landscaping map for trajectories of all length, green/brown and IPC codes 

 

 
 
Figure 3. Landscaping map for trajectories of all lengths, green/brown and countries 



As our analysis is mostly a proof-of-concept of the idea that trajectories are a useful unit of 
analysis for patent landscaping, the policy relevance of our work has a major indirect 
component: to the extent that patent landscaping is used to inform policymakers (e.g., 
innovation policy, policy on intellectual property rights), the application of our method in 
such studies will be one of the ways in which our method could become policy relevant.  
 
However, there are also policy implications of the findings of our own patent landscaping 
exercise in green technology. First, as in our first paper, we found that non-green (brown) 
technology plays an important role in the green technology landscape. Policies aimed at 
making a green technology transition possible should therefore aim at greening non-green 
technologies as well as creating new and original green technology paths. Second, our 
landscaping maps show that large and broad technological areas such as ICT and 
health/medical are important sub-parts of the green technology field. Thus, a Greentech 
technology policy should have a broad focus, rather than only focusing on very specific 
Greentech areas such as electric vehicles. Finally, the geography-based maps that we 
produced show that Greentech technology trajectories do not develop in geographical 
isolation, but rather as a collective international effort. Greentech policy should therefore 
transcend international borders, and be based on international R&D cooperation.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix1: A snapshot of the UNMP dataset we make publicly available as a comma-
delimited text file. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix2: Number of trajectories (out of a total of 3,710,269) per trajectory length 
(on rows) and the number of Greentech patents on trajectory.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number of Green Patents on Trajectory 
Trjectory Length 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Row Totals

2 471,785     37,837   16,518   526,140      
3 407,494     36,206   14,028   9,339   467,067      
4 359,042     35,967   14,075   7,718   5,986   422,788      
5 320,743     34,233   13,888   7,542   5,092   4,331   385,829      
6 291,513     32,599   13,895   7,559   4,764   3,726   2,983   357,039      
7 254,068     30,311   12,281   6,929   4,506   3,249   2,596   2,008 315,948      
8 220,604     26,605   11,275   6,158   4,143   2,997   2,364   1,679 1,163 276,988      
9 182,459     24,131   8,975      5,053   3,227   2,667   1,904   1,285 1,028 730    231,459      

10 149,688     20,815   7,309      4,275   2,835   2,145   1,721   1,071 783    775    563    191,980      
11 116,095     17,501   5,313      3,039   2,196   1,813   1,504   1,321 796    553    443    190    150,764      
12 84,742        13,881   4,312      2,151   1,882   1,230   970       924    792    637    278    219    87   112,105      
13 58,791        10,760   3,194      1,716   1,251   686       679       515    565    523    492    206    93   26   79,497        
14 39,694        9,306      2,328      1,300   756       556       460       384    375    265    284    294    143 34   8     56,187        
15 28,398        7,576      1,954      705       357       351       355       222    161    166    229    179    190 78   7     3     40,931        
16 19,350        5,832      1,404      436       236       161       214       196    189    115    92       103    117 156 33   2     28,636        
17 15,725        4,895      830         276       130       124       119       112    108    50       41       58       51   83   140 21   22,763        
18 10,475        3,861      671         230       82         62         85         48       21       20       17       31       18   31   60   97   6   15,815        
19 6,870          3,865      293         119       74         16         36         28       27       15       7         26       13   11   15   23   13 11,451        
20 3,865          2,886      168         58         34         14         10         20       76       15       19       27       8     5     3     4     2   3   1 7,218          
21 1,981          1,733      117         32         27         17         1           2         3         5         20       16       9     5     1     4     3   2   1 3,979          
22 1,170          1,184      32           4           17         5           3           1         6         11       7     3     10 5 2,458          
23 677             914         11           18         6           12       4         11       9     4     1,666          
24 361             602         6             2           4         1     3     3     2     984              
25 193             180         2             12       1     8     1     397              
26 52               50           3         1     106              
27 18               42           60                
28 14           14                

Column Totals 3,045,853  363,786 132,879 64,657 37,603 24,150 16,004 9,815 6,088 3,881 2,495 1,390 746 440 279 157 24 15 7 3,710,269 



 

EPO ARP Project 
Mapping Greentech Trajectories in the Universal Network 

of Patent Citations 

 

RESEARCH PAPER #1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Greentech homophily and path dependence in a large 
patent citation network 

 
Önder Nomaler & Bart Verspagen 

 

This version of 16 December 2019 

 

Abstract 

We propose a method to identify the main technological trends in a very large (i.e., universal) 
patent citation network comprising all patented technologies. Our method builds on existing 
literature that implements a similar procedure, but for much smaller networks, each 
covering a truncated sub-network comprising only the patents of a selected technology field. 
The increase of the scale of the network that we analyze allows us to analyze so-called macro 
fields of technology (distinct technology fields related by a coherent overall goal), such as 
environmentally friendly technologies (Greentech). Our method extracts a so-called network 
of main paths (NMP). We analyze the NMP in terms of the distribution of Greentech in this 
network. For this purpose, we construct a number of theoretical benchmark models of 
trajectory formation. In these models, the ideas of homophily (Green patents citing Green 
patents) and path dependency (the impact of upstream Green patents in the network) play 
a large role. We show that a model taking into account both homophily and path dependence 
predicts well the number of Green patents on technological trajectories, and the number of 
clusters of Green patents on technological trajectories. 

 

JEL Codes: Q55, Q54, O31, O33, O34 

Keywords: patent citation networks; technological trajectories; main path analysis; green 
technology; climate change mitigation 
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1. Introduction 

In this paper, we report on a new method to extract the main technological trends from a 
very large patent citation network covering all technologies patented under the terms of one 
legal jurisdiction (the European Patent Office, EPO). We also provide an application of this 
method to a specific patent citation network, with the aim to investigate the distribution of 
so-called Greentech patents over the entire network. Greentech are patents that describe 
technology that, as identified by the patent office, contributes to the mitigation of greenhouse 
gas emissions.  

We look at Greentech as a so-called macro-technology field, i.e., a set of distinct technologies 
that are in pursuit of a common and coherent goal (in this case, combatting climate change). 
While methods like ours, i.e., extracting citation paths as a summary of technological trends, 
have a long history in the literature, they have so far only been applied to individual and 
smaller technology fields. Our method brings the analysis of macro-technology fields in reach 
of this method of analysis.  

While the introduction and description of our method is one main goal of the paper, we also 
provide results on the nature of Greentech. For this part of our analysis, we ask how Green 
patents are distributed over then entire network of main technological trends. We cover the 
period 1978 – 2018 and include all patents published by the European Patent Office. In this 
set of patents, do we see clustering of Green patents in particular neighborhoods of the 
citation network? In other words, do Green patents form citation paths that mainly consist 
of Green patents, or are they spread out over the entire network, mixed with Brown patents 
without regard for the “color”? (We adopt the term “Brown” for any patent that is not defined 
as Green).  

These questions have important consequences for the nature of Greentech as a macro-
technology field. If Green patents are strongly clustered, this implies that Greentech is a 
macro-field that develops according to its own internal logic, and that contributing to this 
macro-field requires knowledge of this internal “Green logic.” If, on the other hand, Green 
and Brown patents are perfectly mingled in the citation network, Greentech appears more 
as knowledge that can be added to any technology field at any stage of its development, i.e., 
it occurs as a way of “Greening” a wide variety of technological developments that are not 
inherently Green. 

In order to describe the concentration of Greens in the citation network, we first introduce 
and apply our method of finding the main technological trends in the total citation network. 
This yields what is called the Network of Main Paths (NMP). We then analyze the distribution 
of Green and Brown patents in the NMP. This analysis focuses on the level of individual 
technological trajectories, which are defined as citation paths. The NMP contains a huge 
number of trajectories, and our method enumerates them all to be able to provide statistics 
on them. 
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These statistics will refer to two characteristics of the paths: the number of Greens, and the 
number of color-clusters (Green/Brown) that they contain. The more paths there are at the 
extremes of the distribution (e.g., zero Greens vs. an all-Green path; and just one color-cluster 
vs. as many color-clusters as the path length), the more concentrated the Greens and Browns 
are in the network. However, to be able to interpret the statistics on number of Greens and 
number of clusters observed in the network, we need some kind of theoretical benchmark 
that tells us how many Greens and how many clusters should be expected.  

We provide these benchmarks in the form of three theoretical stochastic models. The first of 
these models does not contain any mechanism that would lead to any particular 
concentration of Greens and Browns. Hence, any concentration that we observe to exceed 
the levels predicted by this model can be interpreted as relatively concentrated. The two 
other models introduce two specific mechanisms that would lead to concentrations of 
Greens and Browns in the NMP. The first mechanism is so-called homophily, which in our 
context, means the tendency for patents of the same color (Green-to-Green and Brown-to-
Brown) to cite each other at higher rates than patents of different colors (Green-to-Brown 
and Brown-to-Green). We observe homophily in the model, and our theoretical model asks 
to what extent this observed level of homophily can explain the concentration of Greens and 
Browns.  

Our third model adds path dependence as a concentration mechanism. Path dependence as 
we define it can be seen as a higher-order form of homophily, i.e., it considers not only 
whether or not the cited patent is Green, but also the color of the nodes that lie before 
(upstream) of the cited patent. Thus, path dependence is the tendency of clusters of more 
than a single Green (or Brown) node to continue as Green (or Brown). The parameters of the 
theoretical benchmark model that includes both homophily and path dependence can be 
estimated from the data of the NMP, and then the model can be simulated to provide 
predictions of the number of Greens and the number of color-clusters on a path. 

The rest of this paper is structured as follows. In the next section, we outline the conceptual 
backgrounds of our analysis. This covers the idea of technology as a sequence of incremental 
changes following a breakthrough invention. This also covers the idea of main path analysis 
to map these sequences, leading to the idea of technological trajectories or technological 
paths (we trajectories and paths mostly as synonyms).  

Section 3 provides a brief elaboration of the specific questions on Greentech that we already 
introduced above. Section 4 introduces the method that we propose to construct the NMP 
from the total citation network. This section also provides descriptive statistics on the NMP 
that we extract, both in general terms, and in terms of the specific indicators on Greentech 
(number of Greens on a path and number of color-clusters). Section 5 introduces the 
benchmark theoretical models and the notions of homophily and path dependence. It also 
provides the estimations necessary to implement the path dependence mechanism. Section 
6 confronts the empirical data of the NMP with the predictions of the benchmark models, i.e., 
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this section evaluates the performance of the models. Section 7 summarizes the argument 
and points to some options for further research. 

 

2. Conceptual backgrounds 

In first instance, our analysis is aimed at outlining the major global technology trends of the 
last few decades by using patent citation networks. The general idea is that patent citations 
indicate some form of knowledge flows, from the cited to the citing patent (Trajtenberg and 
Jaffe, 2002). This is based on the literature that follows Hummon and Doreian (1989), who 
proposed a method for analyzing directed and a-cyclical networks. This is the typical 
network that is formed by citations, either in the scientific literature, or in patent literature. 
The Hummon and Doreian-based methods will identify so-called technological ‘main paths.’  

This has usually been done for individual technological fields, as a way to quantify more 
qualitative impressions from engineers or the history of technology (e.g., Mina et al., 2007; 
Verspagen, 2007; Liu and Lu, 2012). In the current paper, by introducing a number of 
improvements in computing algorithms, we are able to analyze a much larger set of patent 
citations that represent the entire patent literature, and hence the entire spectrum of 
technologies that have been subject to human invention over the last decades, rather than a 
single technology field. By enlarging the scope in this way, we can look at a multitude of 
technological trajectories, and the way that these paths interact. Our emphasis can thus shift 
from identifying single main paths to a network of paths covering all (patented) technologies 
at once.  

This is particularly useful in cases where the interest lies in what can be called a macro-field 
of technology, which we define as a collection of distinct technology fields with a common 
and coherent purpose. The example of a macro technology field that we will consider is so-
called ‘green’ technology, which we define as technologies aimed at climate change 
mitigation. Obviously, technology with this aim consists of a large collection of distinct 
technology fields, e.g., in solar energy, fuel cells, biology, nutrition, agriculture, etc. The 
collection of main paths that we identify in the large patent citation network that is usually 
only studied in small parts will enable us to see how green technology is embedded in this 
larger context. 

The idea that patent citations can be used to map technology trends has an origin in two 
main ideas in the economics and management literature. One idea, originating in the 
management field (e.g., Levinthal, 1997; Fleming and Sorensen, 2004; Aharonson and 
Schilling, 2016), is that technological choice of firms can be represented as a process of 
recombinant search on a technological landscape, and that much of this search is local, i.e., 
in the immediate neighborhood of where search was previously located. The idea of a 
landscape is a metaphor that portrays technological knowledge as configurations of 
component building blocks (e.g., Kaufmann, 1993; Kaufman et al. 2000). By changing one of 
the components of an existing piece of knowledge, or by combining building blocks from 
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several pieces of knowledge, new knowledge can be created from existing knowledge. 
Because the pieces of knowledge are related to each other by the components that they 
share, distance between technologies can easily be operationalized. The metaphor of a 
technological landscape then arises by mapping the knowledge pieces relative to each other 
based on how close they are.  

A central tenet of this landscape concept is that performance of technologies differs and is 
somehow dependent on the position of the technology in the landscape. Thus, the firm (or 
inventor) who searches in the landscape will find particular locations of high or low 
opportunity and value, corresponding to peaks and valleys in the landscape metaphor. Firms 
will want to occupy the high value/opportunity locations of the technological landscape, and 
thus will direct their search efforts towards there. As a result, technological efforts by firms 
will cluster in technology space (e.g., Aharonson and Schilling, 2016). A logical strategy is to 
use prior knowledge about where the feasible and valuable technologies are located (Stuart 
and Podolny, 1996; Fleming and Sorensen, 2004). Such prior knowledge accumulates from 
the firm’s own prior research, and, to the extent that they are observable, other firms’ 
research efforts. Prior research results are guideposts (Sahal, 1981) that help current and 
future research. This leads to a process of dynamic increasing returns, as firms seek out the 
regions of technology space that are most valuable in terms of their economic returns.  

Whether prior knowledge leads to useful information about where new opportunities can be 
found depends on the shape of the landscape. If valleys and peaks occur in the form of smooth 
transitions, prior knowledge will be useful, as it will allow the researcher to follow an 
upward slope, and ultimately reach a (local) peak of valuable knowledge. However, if the 
landscape is more “rugged”, information about prior research may be less useful, i.e., when 
spots of high and low opportunity are found randomly and independently of each other. In 
Kaufman’s model (Kaufmann, 1993; Levinthal, 1997), a parameter tunes the ruggedness of 
the landscape. Intermediate values of ruggedness imply both that clustering on the basis of 
prior knowledge is useful, and that the landscape contains identifiable peaks and valleys 
(Billinger et al., 2014). 

Serendipity and basic research are ways in which search in the technological landscape may 
occur over larger distances. This may open up new areas of the technological landscape, 
which can then be explored by local search. By making a large (random) jump in the 
technology landscape, access to a previously unknown local peak may be gained, although 
this must be realized by (slowly) climbing the slope that leads to the peak. Viewed in this 
way, the process of technological search combines elements of randomness (which areas of 
the landscape are opened up) and systematic exploration by collective action of the firms 
that are active in a specific field (Sorensen and Fleming, 2004).  

This leads to the second idea that underlies our approach based on patent citations, which is 
that technologies develop as ‘trajectories’ (Dosi, 1982) that are heavily influenced by 
economic opportunities. The concept of a technological trajectory is also based on local 
search and is compatible with the metaphor of technological landscapes, while it adds to the 
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previous discussion the idea that sequential incremental improvements of technology will 
generally represent a specific and collective direction in technological space, and that this 
direction is heavily shaped by both technological opportunities and the economic incentives 
that the market provides.  

Dosi’s starting point is that engineers will be inclined to search in the neighborhood of a 
particular set of opportunities, and that such a neighborhood tends to be opened up by a 
paradigm shift that follows, for example, from basic research, or from practical 
experimentation. Although such a paradigm shift, in principle, opens up a number of possible 
trajectories, there will usually only be a selective number that will actually be realized, and 
this is decided on the basis of specific market circumstances.  

The historical case of steam engines may serve as a brief illustration (Nuvolari and 
Verspagen, 2009). Although based on a common technological principle, steam engines were 
applied in many different economic contexts, leading to a wide variety of designs that were 
very much adapted to the incentives found in those contexts. In Cornish mines, where steam 
engines were used to pump up water from flooded mine galleries, the economic incentive 
was saving on expensive coal, which led to very large-scale versions of the low-pressure 
engine that James Watt brought to Cornwall in the late 18th century. On the other hand, in 
the application of steam engines to railways, such large designs were unpractical because 
the engine had to be mobile. As a result, a trajectory emerged of much smaller high-pressure 
engines that could deliver adequate power for transportation. More modern examples of 
trajectories that show the strong impact of cumulated incremental changes can be found in 
digital technologies, for example in the form of the famous Moore’s law.  

 

3. Research questions and operationalization 

The aim of our analysis will be to summarize the main technological trends of the last 
decades, and to investigate how the macro-technology field of green technology is embedded 
in these trends. We are particularly interested to find out to what extent green technology is 
diffused across the entire set of main technology trends, or is concentrated in a smaller 
number of trends. 

Based on our above discussion, we will use a patent citation network to extract main 
technology trends. We define a main technological trend as a technological trajectory in the 
Dosi-sense, i.e., as a series of cumulative improvements to a basic design that together define 
a main direction of technological change. We look at local recombinant search as the main 
way in which firms and research organizations collectively construct these trajectories. And 
we operationalize the concept of a technological trajectory by drawing on the 
methodological tradition of Hummon and Doreian (1989). The next section will specify how 
we identify technological trajectories as a ‘big data’ variety of the original Hummon and 
Doreian concept of a main path in a citation network.  
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With patents as our smallest unit of analysis, we operationalize green technology as a specific 
subset of environmentally friendly patents that is aimed at greenhouse gas emission 
mitigation. This has the advantage that we can use the so-called Y02 tag which the major 
patent offices of the world assign to patents these days. The Y02 tag is in fact a technology 
class in the Cooperative Patent Classification (CPC) scheme. This class can be assigned to a 
patent document in addition to native technology classes that patent offices use, such as the 
US Patent Classification or the International Patent Classification. The Y02 class (the class 
title is ‘Technologies or applications for mitigation or adaptation against climate change’) is 
also further subdivided, for example into eight 4-digit classes that are aimed largely at 
specific application areas such as transport, waste agriculture etc. Using the Y02 CPC class, 
we classify each patent in our network as either green (having a Y02 tag) or brown (not 
having a Y02 tag).  

This leaves the question how to operationalize the extent of diffusion (or concentration, 
which we consider the opposite of diffusion) across the main technology trends that we 
identify in the patent citation network. In order to measure diffusion, we look at the unit of 
individual technological trajectories, or paths, and ask how many patents on a specific path 
are green. Using three distinct theoretical models with varying degree of complexity, we can 
formulate precise statistical expectations on the number of green patents on a path with 
given length. Testing these expectations against what is observed in our data is the way in 
which we operationalize the degree of diffusion or concentration of green patents in the 
network of main paths.  

For example, the simplest of our theoretical models predicts that 49.7% of all paths with 
exactly 10 patents will have no green patents at all, while a slightly more complex model 
predicts that 65.2% of all paths with length = 10 will have no green patents. However, in the 
actual data, 78.0% of all paths with length = 10 has no green patents. Thus, the second model 
predicts higher concentration (less diffusion) of green technology than the first model, while 
in the actual data, we observe more concentration than either model predicts. In the analysis 
below, we will also present a third model, and perform the analysis for different number of 
green patents (>1, >2 etc. instead of just >0) and different path lengths (up to 28), so that a 
complete picture of concentration of green technology in our network of main paths 
emerges.  

In the models that we employ to predict the distribution of green technology over the main 
paths in our citation network, the concept of homophily will play a large role. In network 
analysis (e.g., McPherson et al., 2001), this refers to the idea that similarity between nodes 
of the network (in our case, patents) tends to have a positive influence on the probability 
that a connection (in our case, a citation) exists between the nodes. In our models, we define 
homophily as the tendency for preferential citation, i.e., for green patents to cite green 
patents and brown patents to cite brown patents. We observe homophily in our network, 
especially in the brown-to-brown citations. Our analysis will show that incorporating 
homophily in the model generally increases the ability to predict the occurrence of green 
patents in the main paths that our analysis finds.  
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4. Methods – Main Path Analysis 

4.1. The patent citation network 

The first step in our analysis is to construct the total network of citations. This starts by 
extracting a citation network between PatStat application ids for which the application 
authority is ‘EP’.1 Citations take place between publications, while an application id may be 
associated with more than one publication. Thus, we consider a citation from at least one 
publication related to application X to at least one publication related to application Y as a 
citation from application X to application Y. In order to guarantee that we avoid cycles in the 
citation network, we consider a citation as valid only if the application date of the citing 
application is at least one day later than the cited application.  

The citation network that is formed in this way has 2,758,196 citations linking 2,033,487 
EPO patent applications. Thus, out of the 3,561,211 EPO patent applications reported in 
PatStat, 1,527,724 (about 43%) are not represented in the citation network, simply because 
these neither cite or are cited by any other EPO patent. In order to increase coverage, the 
citation network is adapted in two ways, both of which add links to the network that are not 
actually present in the original set of intra-EPO citations.  

The first extension of links in the network is aimed at capturing citations at other patent 
offices than the EPO. We add this to account for technological paths that are not captured 
exclusively by EPO patents. In this case, we look for any indirect citation linkages between 
EPO patents that exist between EPO patents, and add these as direct linkages in our network. 
For example, if EPO-application A is cited by US application B and US application B is cited 
by EPO application C, then we add a link from EPO application A to EPO application C in our 
network, even if no actual citation exists between those two EPO applications.  

Our second extension deals with patent families, as documented by the DocDB families in 
PatStat. Patent family membership indicates a degree of similarity between the documents 
in the family, i.e., a family can be seen as covering a single invention by multiple patent 
applications. The reasons for filing more than a single application for the same invention are 
mostly legal. One commonly found reason is to extend coverage to multiple countries. Our 
exclusive focus on a single jurisdiction (EP) already implies that we do not have any family 
relations of this type. However, due to other legal reasons (e.g., divisionals, extensions, etc.), 
a DocDB family may still have more than one EPO application. 

We found that treating a single family as a single invention by aggregating citations into a 
single link between families leads to cycles in the citation network. For example, application 
P and application Q could be members of the same family, but typically have different 
application dates. Then if patent Q cites another document with application date later than 
patent P, cycles will emerge easily in the aggregated citation network.  

 
1 We use the 2019a edition of PatStat. 
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In order to avoid cycles, we deal with family membership by first ranking all EP-members of 
a family in terms of their application date, and then add links from the oldest EP-member to 
the next, and from this EP-member to the next, etc., until we reach the newest EP-member of 
the family. In other words, we consider a family as a technological path in itself. This 
procedure will prevent cycles from forming, while still recognizing the similarities between 
inventions in a family. In this way, we have an extended patent citation network that consists 
of 2,771,440 patent applications (about 78% of all applications at the EPO) and 9,090,460 
citations between them. This covers the period 1978 – 2018. 

 

4.2. The network of main paths: construction 

The next step in our analysis is to construct the network of main paths in the total citation 
network. In methodologies that draw on Hummon and Doreian (1989), the former is a 
systematically reduced subset of the latter, obtained by eliminating the patents and/or 
citations of ‘lesser’ importance. Thus, the network of main paths is a collection of citation 
chains that are representative of the most important sequences of (incremental) progress in 
the technology field(s) covered by the documents in the given citation network.  

The first stage in constructing the network of main paths is to calculate an index of (relative) 
importance for each citation link in the network. These are referred to as traversal weights. 
Several alternative link weighing principles are proposed by Hummon and Doreian (1989) 
and later by Batagelj (2003). The most commonly used one is SPNP (Search Path Node Pair) 
which, in a nutshell, is the number of document pairs that are connected directly or indirectly 
by a given citation link. More formally, SPNP is the number of times a given citation link is 
visited if one follows through all possible upstream paths from all (direct and indirect) 
ancestors of the cited document (including itself) to all (direct and indirect) descendants of 
the citing document (including itself). We will only use SPNP in this paper.  

In Hummon and Doreian (1989) and the largest part of the related literature that follows, 
the second stage of the method identifies a so-called main path in the network. The main 
path is a chain of citations that is constructed on the basis of some heuristic that aggregates 
the individual traversal weights of the constituent citation links of the chain. Usually, the 
main path is identified by a ‘priority first search’ algorithm, which, starting from a given 
start-node, follows consecutive citation links stepwise, choosing each time the next forward 
citation link with the highest SPNP value until hitting an end-node.2 In case of a tie, the 
trajectory branches out since the algorithm separately takes each link with the highest link 
value and follows each emerging branch to the end. 

Hummon and Doreian (1989) picked one start-node among several possible in their 
network, and focus on the main path that is formed by performing the priority first search 
algorithm from this start-node only (although they did sensitivity analysis comparing other 

 
2 A start-node is a node (patent) that does not cite any other patents. An end-node is a patent that is not cited 
by any other patents. 
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start-nodes). If there are no ties, this method identifies a single trajectory, the top main path 
(TMP). Verspagen (2007) starts from each start-node in the network, and constructs (based 
on the ‘priority first search’ principle) a collection of main paths that is referred to as the 
network of main paths (NMP). If the aim of the exercise is to describe the main trajectories in 
a specific technology field, the choice is often to focus on the TMP, because the NMP remains 
too large to provide a concise historical narrative.  

The NMP or TMP that is generated by the priority first search algorithm consists of a subset 
of citations and patents of the original citation network. This is obvious for the TMP, but even 
the NMP generally does not cover all patents and citations. In a citation network with S start-
nodes, the NMP may consist of 1 to S weakly-connected components.3 But it is very likely 
that some of the individual paths in the NMP will partially overlap, leading to less 
components. For example, in Triulzi (2015), the largest main component of a citation 
network of about 114 thousand patents and about 779 thousand citations is reduced (by the 
procedure explained above) into a NMP of about 23.5 thousand patents (a reduction in size 
by about 80%) and about 22 thousand citations. This NMP consists of several weakly-
connected components where the largest one consists of about 3.5 thousand patents.  

As stressed by Liu et al. (2012), it is important to realize that the priority first search 
algorithm is a heuristic that does not guarantee a global maximum in the value of the 
summed SPNP over the found main path(s). This holds for the TMP as well as for any other 
main paths in the NMP. In other words, for any start-node, there may well be forward paths 
that have a higher total SPNP value than the main paths found in the priority first search 
algorithm. This is related to another arbitrariness identified by Liu et al. (2012): instead of 
starting from a start-node and implementing a forward search, one may just as well start 
from an end-node and search backwards. The forward search method constructs an NMP 
which incorporates at least one trajectory that emanates from each start-node of the original 
network, although only a subset of the end-nodes of the original network will make it to the 
NMP. With the backward search, all end-nodes of the original network, but only a subset of 
the start-nodes will end up in the NMP. Furthermore, the local (priority first) backward 
search might yield a rather different set of trajectories than the local (priority first) forward 
search, including a different TMP.  

Our methodological innovation is threefold. First, we propose to substitute the usual priority 
first forward search heuristic by an alternative that combines both forward and backward 
search to maximize the (log-)sum of SPNP between all combinations of start-nodes and end-
nodes that are connected in the citation network. Second, we separate the elimination of 
patents and citations in the procedure of constructing the NMP. Some citations are 
eliminated first, leaving all patents in the NMP, and only after this do we start to prune this 
NMP by removing both patents and their inward and outward citations. Third and finally, 
while we prune the NMP, we remove entire paths (based on their log-sum of SPNP) rather 

 
3 In a directed network, a weakly-connected component is a subset of patents for which there exists a path from 
any node to any other nodes if all unidirectional links are replaced by bidirectional connections. 
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than individual patents. This has the advantage that the connectedness of the NMP remains 
largely intact. In this way, we can prune the NMP at any desired level, from no pruning at all 
to only leaving the TMP.4 

Let us now formally describe the method, which will consist of first defining and constructing 
an NMP, and then pruning it step-by-step to obtain the TMP. We represent a trajectory as an 
ordered set 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘 which refers to a forward citation chain (or a sub-chain) of successively 
connected N𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘  nodes (patent documents). This (sub)chain emanates from node i, which 
we also denote as 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘 (1), and terminates at node 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘 (N𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘). Because multiple chains may 
start at note i, we use the index k to identify them. For any successive pair of documents 
 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘(𝑗𝑗) and 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘(𝑗𝑗 + 1) (where 𝑗𝑗 ∈ �1,2, … ,𝑁𝑁𝐹𝐹𝑇𝑇𝑖𝑖𝑘𝑘 − 1�), there exist a direct citation link from 
the latter to the former. Note that the document pair 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘(𝑗𝑗) and 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘(𝑗𝑗 + 1) may also appear 
on other trajectories than just 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘.  

Let Fi denote the set of all NFi forward citation chains that emanate from a given node i. Thus 
for any citation chain 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘 ∈  𝐹𝐹𝑖𝑖 , by definition  𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘(1) = i for ∀k ∈ {1,2, … ,𝑁𝑁𝑁𝑁𝑖𝑖}). Also, let 
𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘(𝑗𝑗)) denote the SPx value5 of the link through which document 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘(𝑗𝑗 + 1) cites 
document 𝐹𝐹𝐹𝐹𝑖𝑖𝑘𝑘(𝑗𝑗).  

To accommodate backward search, let us draw up a set of similar definitions that take the 
backward perspective, by replacing the letter F by the letter B in all definitions so far. Then 
𝐵𝐵𝐵𝐵𝑖𝑖𝑘𝑘 represents a trajectory as an ordered set of successively backward connected N𝐵𝐵𝐵𝐵𝑖𝑖𝑘𝑘  

nodes where, for any 𝑗𝑗 ∈ �1,2, … ,𝑁𝑁𝐵𝐵𝐵𝐵𝑖𝑖𝑘𝑘 − 1�, the successive pair of documents in the ordered 
set as 𝐵𝐵𝐵𝐵𝑖𝑖𝑘𝑘(𝑗𝑗) and 𝐵𝐵𝐵𝐵𝑖𝑖𝑘𝑘(𝑗𝑗 + 1) indicates an actual direct citation link from node j to node j + 
1. Finally, let S denote the set of all start-nodes, and E the set of all end-nodes of the citation 
network. 

We are now ready to define and construct the NMP. For any node i in the network, we identify 
the particular (forward) trajectory 𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜 that, for an aggregation rule A(∙) of choice (additive, 
multiplicative), satisfies the condition  

𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜(1)), … , 𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜(𝑁𝑁𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜 − 1))) ≥ 𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑚𝑚(1), … , 𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝐹𝐹𝑖𝑖𝑚𝑚(𝑁𝑁𝐹𝐹𝐹𝐹𝑖𝑖𝑚𝑚 − 1))) 

for o ∈ {1,2, … ,𝑁𝑁𝑁𝑁𝑖𝑖}, ∀m ∈ {1,2, … ,𝑁𝑁𝑁𝑁𝑖𝑖} and 𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜(N𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜) ∈ 𝐸𝐸 and 𝐹𝐹𝐹𝐹𝑖𝑖𝑚𝑚(N𝐹𝐹𝐹𝐹𝑖𝑖𝑚𝑚) ∈ 𝐸𝐸 (i.e., only 
forward trajectories that terminate at end-nodes of the network are considered). This is the 
forward path from node i that maximizes aggregate forward SPx. 

In the same way, we identify the backward trajectory from any node i that maximizes 
backward SPx, which implies finding, for each node i of the citation network, the particular 
backward trajectory 𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜 where  

 
4 Our TMP is identical to the one that would be identified by Liu et al. (2012). 
5 In our analysis, we will only work with SPNP, but the method can also be applied using the alternative 
Hummon & Doreian citation indicators, SPLC or SPC. 



11 
 

𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜(1)), … , 𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜(𝑁𝑁𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜 − 1))) ≥ 𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑚𝑚(1), … , 𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵𝐵𝐵𝑖𝑖𝑚𝑚(𝑁𝑁𝐵𝐵𝐵𝐵𝑖𝑖𝑚𝑚 − 1))) 

for o ∈ {1,2, … ,𝑁𝑁𝑁𝑁𝑖𝑖}, ∀m ∈ {1,2, … ,𝑁𝑁𝑁𝑁𝑖𝑖} and for o and ∀m, 𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜 (N𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜) ∈ 𝑆𝑆 and 𝐵𝐵𝐵𝐵𝑖𝑖𝑚𝑚 
(N𝐵𝐵𝐵𝐵𝑖𝑖𝑚𝑚) ∈ 𝑆𝑆 (i.e., only complete trajectories that extend all the way back to a start-node of 
the original network are considered). 

Having identified these maximum-SPx trajectories for all nodes of the network, we also 
define  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = 𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜(1)), … , 𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜(𝑁𝑁𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜 − 1))) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = 𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜(1)), … , 𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜(𝑁𝑁𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜 − 1))) 

These are the actual (maximum) values of aggregated SPx among all forward and backward 
trajectories from node i.  

We define and construct the NMP of the citation network by appending at every node i of the 
network the trajectories 𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜 and 𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜. We denote this new trajectory as 𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜. The new path 
𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜 is, obviously, the maximum-SPx trajectory that goes through node i. Note that if node i 
is a start-node (i ∈ 𝑆𝑆), 𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜 will be empty and 𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜 = 𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜. Similarly, 𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜 = 𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜 if i ∈ 𝐸𝐸 (the 
node is an end-node). Our NMP consists of all these appended maximum-SPx trajectories 
𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜.  

In this NMP, we eliminated a number of citations from the original citation network, but still 
all patents (nodes) of that original network are present. Thus, the NMP represents the 
metaphor of the most ‘important’ technological paths traveled, but only to the extent that 
this network of paths still visits all inventions that populate the landscape. In order to make 
the ‘map’ of the technological landscape a little coarser, and hence easier to interpret, we 
next proceed to drop also patents, and their incoming and outgoing citations, from the NMP.  

To do this, we first assign every node i in the NMP a new indicator of significance, equal 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑖𝑖= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 . This is the aggregate value of SPx of node i's maximum SPx 
trajectory 𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜, by which it contributed to the NMP. Having assigned all nodes with this 
indicator of importance, we proceed to prune the NMP by cutting the patents (and their 
direct forward and backward citations) with the lowest 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  values. Note that by 
construction, this will never cut single patents, but instead the entire path 𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜. If we 
successively prune the paths 𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜with lowest 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  value from the NMP, we will be left 
with a single 𝑇𝑇𝑇𝑇𝑖𝑖𝑜𝑜. This is the TMP that is often used in other studies.6  

Liu et al., (2012) propose summation as the aggregation operator. This ensures that the TMP 
of the citation network is the best trajectory that emanates from the start-node s where 
MASPxFs ≥ MASPxFi for all starting points i ∈ 𝑆𝑆. It also implies that backward search will not 
yield any trajectories with higher SPx sum. In Nomaler and Verspagen (2016), we chose 

 
6 In practice, with the large citation network that we use in the analysis below, we will not prune the NMP one-
by-one, but instead at particular points of the distribution of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  values in the NMP. For example, we may 
prune to keep only the top-50% values of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 , or the top-10%. 
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instead multiplicative aggregation, and identified trajectories on the basis of the 

maximization of ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝐹𝐹𝑖𝑖𝑜𝑜(𝑗𝑗)))𝑁𝑁𝐹𝐹𝐹𝐹𝑖𝑖
𝑜𝑜−1

𝑗𝑗=1 . This log-sum maximization avoids the possible 
dominance of trajectories which might contain a few extremely high SPx-valued links 
together with many low SPx-valued ones, and instead gives priority to those characterized 
by moderately high but evenly distributed SPx values.  

To conclude the description of our method, we will use a small example network to show 
how the NMP is created from the total citation network, and how the NMP can be 
successively pruned to yield, ultimately, the TMP. This example is displayed in Figure 1. The 
total citation network in the top panel has 12 patents, which are labeled P1 – P12. Arrows 
indicate knowledge flows or citations (knowledge flows from the cited to the citing patent). 
P1, P2 and P3 are start-nodes while P11 and P12 are end-nodes. The numbers attached to 
the arrows are log-SPNP of the citation link (these are not reproduced in the bottom panel), 
and the numbers in square brackets attached to the nodes (patents) are 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  as 
explained above. 

 

 

 

 
Figure 1. Example network, total citation network (top panel) and extracted NMP (bottom panel) 
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Having calculated the log-SPNP values (which works the same as it does in other studies, 
starting with Hummon and Doreian), our procedure to calculate the NMP drops a number of 
citation links from the total citation network. To see how this works, consider the citation of 
P4 by P10, at the top of the network diagram. This citation has log-SPNP value equal to 2.58, 
which is not very high, and it lies on two paths: P1  P4  P10  P11 and P2  P4  P10 
 P11. The log-sum of SPNP is equal between those two paths: 3 + 2.58 + 4.58 = 10.16.  

All patents on these two paths have alternative paths with higher SPNP. For example, P1, P2 
and P4 also lie on the paths P1/P2 P4  P7  P9  P12, with total log-sum of SPNP equal 
to 15.55. P10 and P11 also lie on the path P3  P5  P6  P9  P10  P11, with log-sum 
of SPNP equal to 23.13. Therefore, the citation P4  P10 does not make it to the NMP, as 
displayed in the bottom panel.  

The NMP has 5 trajectories, which our algorithm enumerates and identifies by a unique 
trajectory number:  

T#1 (value 28.36): P2  P5  P6  P8  P9  P10  P11,  

T#2 (value 28.36): P3  P5  P6  P8  P9  P10  P11,  

T#3 (value 23.04): P2  P5  P6  P8  P9  P12 

T#4 (value 23.04): P3  P5  P6  P8  P9  P12 

T#5 (value 21.14): P1  P4  P7  P9  P10  P11  

Trajectories #1 and #2 have the same trajectory value (log SPNP sum) and the same length, 
but differ in terms of the start-node. Similarly, trajectories #3 and #4 are identical except for 
their start-node. Thus, we can refer to the first two trajectories as a ‘trajectory group’ and 
the third and the fourth another trajectory group. Our algorithm also enumerates trajectory 
groups on the basis of the following definition: A trajectory group is a set of trajectories, each 
with identical length and total (log) SPNP sum, and all having at least one common node (i.e., 
patent) exactly at the same position (order of appearance) of the trajectory.  

Having constructed the NMP, it can be pruned. The first patents to be dropped, along with 
their inward and outward citations, would be P1, P4 and P7, as these have the lowest weight. 
This first cut effectively eliminates T#5 (although leaving intact P9, P10 and P11, which also 
participate to the more significant trajectories T#1 and T#2). Next, P12 would be dropped, 
eliminating trajectories #3 and #4, leaving the trajectory group formed by trajectories #1 
and #2 as the only paths left, i.e., the TMP. 
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 4.3. The network of main paths: empirical results7 

Having defined the NMP in this way, we proceed to provide some brief descriptives of it. Note 
that the NMP that we constructed contains the same number of patents as in the total citation 
network (2,771,440), but reduces the number of citations from the original 9,090,460 to 
3,494,708. Figure 2 documents the number of nodes in the NMP over time, by type of node 
(start-node, internal node or end-node). The number of start-nodes first rises, then stabilizes 
and from about 1990 falls. The number of start-nodes is small as compared to the other types 
of nodes, except in the early period. The number of internal nodes rises slowly, peaks in 2001 
and then falls slowly again. The number of end-nodes rises slowly, peaking towards the very 
end of the period. From about 2000 onwards, the number of end-nodes is larger than either 
the number of start-nodes or the number of internal nodes. This means that many of the 
paths in the NMP have star-like structures at the end, i.e., one final-but-one node linking to a 
larger number of end-nodes. 

Figure 3 provides more information about the distribution of path length in the NMP and the 
relation between path length and log-sum of SPNP of the paths. We see that there are 
relatively many paths of relatively short length. Path length 2 (shortest possible) is the most 
frequent one (about 525,000 paths). 28 is the longest path length, but there are very few (14) 
paths of this length (note the log-scale for the axis of number of paths). Looking only at 
trajectories that contain at least one Green, we find relatively few of them (about 660,000 of 
a total of 3.7 million, or about 18%). The number of paths with some Green peaks at path 
length 6 (about 65,000 paths), while all of the longest (length 28) trajectories have some 
Green. The figure also shows that short paths tend to have low log-sum of SPNP, i.e., these 
paths would be the first one to be pruned in the procedure that was explained above. Average 
log-sum of SPNP rises almost linearly with path length, with a narrow standard deviation 
around the mean. 

Next, we look at the phenomenon where our main interest lies: the distribution 
(concentration of diffusion) of the Greens and Browns on the NMP, including the pruned 
versions of the NMP. The basic unit of observation for this description will be individual 
paths in the NMP. We will enumerate all paths that are found in the NMP (or a pruned version 
of it), and characterize each path by two main characteristics: the number of Greens on the 
path, and the number of color-clusters on the path. In defining color-clusters, we simply look 
at subsequent nodes of the same color, and consider them as a cluster. For example, the path 
G B  B  G G has 3 clusters (G, B  B and G  G).  

 

 
7 The NMP of our citation network is available as a database (comma-delimited text file which can be built into 
a relational table under any database engine), and can be downloaded at 
https://dataverse.nl/dataset.xhtml?persistentId=hdl:10411/ZDCQY3. The database contains all information 
on application id of the NMP nodes (patent documents), all trajectories (and trajectory group) the node belongs 
to, and which position it takes on each trajectory. The database can be linked to PatStat by application id 
(appln_id) to obtain other patent information (such as the Green/Brown nature). 

https://dataverse.nl/dataset.xhtml?persistentId=hdl:10411/ZDCQY3
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Figure 2. Number of nodes by type, un-pruned NMP 

 

 

Figure 3. Number of trajectories and long-sum of SPNP by path length 
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Obviously, the possible number of Greens and the number of clusters on a path depend on 
the length of the path. Therefore, we will perform our analysis for each observed path length 
in the NMP. As implied by our method, there will be no isolates in the NMP, and hence 
minimum observed path length in the (non-pruned) NMP is 2. Figure 4 shows the observed 
frequency of paths by length in the NMP and five pruned version of it. Pruning has been done 
by percentile of the node weights as defined above, and the label indicates how much of the 
full NMP is kept. For example, NMP75 refers to a network in which the bottom 25 percentile 
nodes (and their citations) have been removed from the NMP (the largest pruned NMP), 
while NMP5 drops the bottom 95 percentile nodes (smallest pruned NMP).  

The line for the full NMP is the same as in Figure 3, where short paths (length 2) are most 
frequent, and every longer path length shows a lower observed frequency. In line with what 
is expected on the basis of the SPNP line in Figure 3, pruning this network removes mostly 
the short paths, because these are the paths with low log-sum of SPNP. In the NMP75, all 
paths of length 2 and some of length have disappeared, while paths of length 4 and longer 
remain (almost) as frequent as in the NMP. This process repeats itself with further pruning 
until in the NMP5, the shortest path length is at 11. This implies that looking at longer path 
lengths in the (unpruned) NMP is a good approximation of the actual pruning process.  

 

 

Figure 4. Number observed paths by length, NMP and pruned versions of it 
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Figure 5. Histograms of observed numbers of Greens on a path (log), by path length, NMP and pruned 
NMPs 

 

Figure 5 shows the distribution of the number of Greens on a path in the NMP and its pruned 
versions, by path length. Path length is on the vertical axis, so that each horizontal row 
represents paths of identical length. The horizontal axis of each figure displays the number 
of Greens on a path, and the color shading indicates the relative frequency in the network. 
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These frequencies are the log of the share of a particular path type in the entire network. For 
example, the color for the cell with path length 3 and number of Greens 1 indicates the 
relative frequency (log) of paths of length 3 with one green in the network. White cells 
indicate impossible combinations (number of Greens larger than the path length), and the 
lightest shade (cyan) indicates cells with zero observed cases (for example, we observe no 
purely Green paths of length 28).  

The subfigures indicate different pruning levels of the NMP. The lower-left corner of each 
subfigure disappears when the NMP is pruned more (as in Figure 4). Each of the subfigures 
shows a strong concentration of paths with zero Greens or just one Green. Paths of length 
(about) 5 – 15 are most often found to contain relatively large numbers of Greens. Longer 
paths mostly occur with only one or no Green at all.  

Figure 6 shows the same type of histogram, but for the number of color-clusters. This shows 
a very similar picture, with a large concentration of paths that have just one or a few clusters. 
These are mostly paths with very few Greens, i.e., all-Brown paths (one cluster) or paths with 
just one Green (either two or three clusters, depending on whether the Green occurs internal 
to the path). One difference that we observe between the two histograms is in the near-
diagonal area for long paths, which exclusively has zeros for the cluster histogram, but some 
paths in the number of Greens histogram. 

Figure 6 also shows that an uneven number of clusters occurs more often than an even 
number. For example, the cells for one or three clusters show higher frequencies than their 
neighbors for two and four clusters. This is expected, especially for longer path lengths. For 
example, for a path of length 5 with just 1 Green to have an even number of clusters (2), the 
Green must be either a start-node or an end-node, which is an a priori probability of 2/5. On 
the other hand, if the Green is internal to the path (the larger probability equal to 3/5), there 
will be an odd number of clusters (3).  

This is a good illustration of the fact that we need a benchmark to interpret the histograms. 
This benchmark should guide us in judging whether the observed frequencies in these 
histograms are more or less frequent than what can be expected on the basis of the 
benchmark. Our next section will introduce three benchmark models, all based in probability 
theory. The task we set for these benchmark models is to try to predict the particular 
distribution of Greens that are observed in Figure 5 and Figure 6. This means that the models 
must be able to explain, among other things, the relative abundance of paths with few Greens 
(0 or 1) and few color-clusters, and the relative abundance of middle-long paths with 
relatively many Greens. 
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Figure 6. Histograms of observed numbers of clusters on a path (log), by path length, NMP and pruned 
NMPs 
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5. Benchmark models for trajectory formation 

Do the empirical characteristics of the NMP, at different levels of pruning, represent any 
substantial level of concentration of green patents? This is the question that we now turn to. 
In order to answer it, we need a benchmark to compare the empirical data against. We will 
provide a number of those benchmarks, in the form of theoretical models of trajectory 
formation. 

All models that we present will take trajectory length as given, i.e., we will use the models to 
generate predictions for trajectories of a specified length, and then compare these 
predictions to the empirically observed trajectories of the same length. The three models 
that we use have various degrees of Greentech concentration built into their assumptions. 
The comparison of the model predictions with actual data will therefore enable us to assess 
empirical concentration of Greentech. We will now present the three models in turn. 

 

5.1. The Binomial model 

The first benchmark model is based on the Binomial distribution. This model assumes no 
particularly strong concentration of Greentech across the NMP. It is built based on two 
probabilities, which we denote pGS and pG. pGS is the probability that the start-node of the 
trajectory is a Green, and pG is the probability that a non-start-node is a Green. These 
probabilities are observed in the NMP, and we use these observed probabilities to construct 
the Binomial benchmark model.  

The prediction of the Binomial model for the number of Greens on a trajectory of given length 
can be derived directly from the analytical expression for the Binomial distribution. 
However, this is not possible for the prediction of the number of clusters. Therefore, our 
implementation of the binomial model enumerates all possible trajectories of a given length 
in terms of their Green/Brown content. For example, for trajectory length 3, the possible 
trajectories are G_B_B; B_G_B; B_B_G; G_G_B; G_B_G; B_G_G; G_G_G; B_B_B. Each one of those 
possibilities has an easy-to-calculate probability, for example the probability of G_G_B is 
equal to pGS x pG x (1 – pG). The probability of n Greens on a trajectory of length 3 is then the 
sum of these probabilities over all possible trajectories with n Greens (e.g., the probability to 
find exactly one Green on a trajectory of length 3 is the sum of probabilities of the first three 
possibilities enumerated above). Similarly, the probability of m clusters on a trajectory of 
length 3 is the sum over all possibilities that yield m clusters (e.g., the probability to find 
exactly one cluster on a trajectory of length 3 is the sum of probabilities of the last two 
possibilities enumerated above). 

 

5.2. The Homophily model 

Our next benchmark model is an elaboration of the Binomial model that assumes some 
degree of concentration of the Greens and Browns in the network by the mechanism of 
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homophily. This model assumes the same probability pGS for a start-node to be a Green, but 
it differentiates the probability for any non-start-node to be green, depending on what color 
the cited node has. Thus, we distinguish pGG and pBG, which are, respectively, the 
probability that a node is a Green conditional on the previous node being Green, and the 
probability that a node is a Green conditional on the previous node being Brown. Again, these 
probabilities are observed in the empirical data of the NMP.  

The logic of calculating the expected number of Greens or number of clusters is the same in 
the Homophily model as in the Binomial model, i.e., we enumerate the options and aggregate 
probabilities. But the outcomes are rather different between the two models. For example, 
for trajectory length 3, the Binomial model predicts that 17.6% of all trajectories will have 
exactly one Green, while the Homophily model gives 7.2%. Similarly, the Homophily model 
predicts that 6.7% of those trajectories will have exactly 2 clusters, while the Binomial model 
gives 12.6%. 

These differences arise from the difference between pGG and pBG. We observe a low value 
for pBG (0.040), while the value for pGG is much higher (0.491). These numbers imply a high 
degree of homophily for the Brown patents (pBB = 1 – pBG = 0.960) but less so between the 
Greens (pGG = 0.491). Interpreting these numbers loosely, we can say that Brown patents 
have a strong preference for citing other Brown patents, whereas Green patents are more or 
less indifferent between citing other Green patents or citing Brown patents. This implies that 
the concentration levels that are observed in the Homophily model are mostly due to the 
Brown homophily. 

 

5.3. The Homophily-plus-Path dependence model 

Our last model again extends the previous one by assuming an additional mechanism that 
will likely lead to concentration. It assumes that the probability of the citing patent being a 
Green depends not only on the color of the cited patent (as in the Homophily model), but also 
on the patents that lie before the cited patent (if any). To measure this, we count all Green 
patents upstream from the cited patent (i.e., the cited patent is not included in this count), 
and express this as a fraction of the number of upstream patents. This is called the path 
dependence indicator. For example, when considering the color of the fifth patent following 
after G_B_G_G, we calculate the path dependence indicator as 2/3 (2 Greens in a total of 3 
upstream patents).  

In the Homophily-plus-Path dependence (HP) model, we assume that the citation probability 
is homophilic and path dependent, i.e., we assume 𝑝𝑝𝐺𝐺𝐺𝐺 = 𝑝̅𝑝𝐺𝐺𝐺𝐺 + 𝑎𝑎𝐺𝐺𝐷𝐷 and 𝑝𝑝𝐵𝐵𝐺𝐺 = 𝑝̅𝑝𝐵𝐵𝐺𝐺 +
𝑎𝑎𝐵𝐵𝐷𝐷, where D is the path dependence indicator as defined above, and aG, aB, 𝑝̅𝑝𝐺𝐺𝐺𝐺 , and 𝑝̅𝑝𝐵𝐵𝐺𝐺 
are parameters that must be estimated econometrically from the data. 

We use a logit model to obtain these estimates. This model takes the binary variable that a 
citing patent is a Green patent (1 if that is the case, 0 otherwise) as the dependent variable. 
It has just one independent variable (in addition to a constant) and this is the path 
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dependence indicator as explained above. We estimate this model on the sample of citation 
pairs that are present in the NMP, separately for the samples where the cited patent is Green 
and where it is Brown. For citation pairs where the cited patent is a start-node, we impute 
the average value of the path dependence indicator for Green or Brown patents (depending 
on the color of the start-node).8 

 

Table 1. Logit estimations of the parameters of path dependence model 

Independent variable Estimate Standard Error (significance) 
Sample with cited patent Green 
Path dependence 1.738 0.014 (***) 
Constant -0.669 0.007 (***) 
Sample with cited patent Brown 
Path dependence 2.988 0.014 (***) 
Constant -3.327 0.003 (***) 

 

Table 1 provides the logit estimates. We see that the path dependence variable is highly 
significant in both samples, and so is the constant. These estimated values are not very 
meaningful in themselves, as they need to be combined with the path dependence indicator 
values, and then transformed to estimates of the actual probability. To obtain a rough 
indication of the importance of path dependence in forming trajectories, we can calculate the 
implied probability under the assumption of path dependence = 0, which gives us 𝑝̅𝑝𝐺𝐺𝐺𝐺 , and 
𝑝̅𝑝𝐵𝐵𝐺𝐺 , and compare this to the probabilities of the Homophily model (pBG and pGG).9  

In the sample where the cited patent is Brown, the probability in the Homophily model (pBG) 
is 0.040, while we find 𝑝̅𝑝𝐵𝐵𝐺𝐺 = 0.035. Thus, on average, path dependence contributes about 
(0.040 – 0.035)/0.040 ≈ 16% of the “baseline” probability in the Homophily model. For the 
sample of Green cited patents, we find 𝑝̅𝑝𝐺𝐺𝐺𝐺 = 0.338, while pGG = 0.493. Here the difference 
≈ 31%. Thus, indirect homophily in the form of path dependence explains a substantial part 
of the baseline homophily, especially for Green-to-Green citations.  

 

6. Clustering and concentration in the NMP  

We are now able to compare the nature of the actually observed paths in the NMP to the 
expected number of paths in the three benchmark models. The results are documented only 
for paths up to length 22, because the expected frequencies must be derived 
computationally, and this takes very long for longer path lengths. Also, the number of 
observed long paths is very low, so that the statistical comparison that we are after is hard 

 
8 We did an estimation excluding all citation pairs with cited start-nodes, and this yields very similar results. 
9 The probabilities in the Homophily model can also be estimated in a logit model, by using a model with only 
a constant. 
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for long paths. To save space, we do not distinguish between pruned versions of the NMP, as 
we already know that by and large we may achieve this by looking at longer paths. 

 

 

 
Figure 7. Root mean squared error for predicted number of Greens (top panel) and predicted number 
of color-clusters (bottom panel) 

 

In order to undertake the comparison between actual data and predicted frequencies, we 
standardize the predicted probabilities and the observed shares to unity for each path 
length, i.e., for each path length, we compare the expected and observed shares of paths with 
zero Greens, one Green, etc. in all paths of the specified length. The differences between 
observed and predicted are then either expressed simply as the difference, or as the 
difference of their logs. This distinction is made because all benchmark models predict a 
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relative abundance of paths with few (1 – 3) Greens or color-clusters, while paths with a high 
number of Greens or high number of clusters are very improbable (and infrequent). As a 
result of this, the difference between observed and expected frequencies has very different 
scales between high and low number of Greens or clusters. The log or non-log versions of the 
difference each bring out one of these scales in a better way. 

We first look at a summary measure of the performance of each of the three benchmark 
models. This is displayed in Figure 7, which documents the root mean squared error for each 
path length, and for each of the three benchmark models (this is based on the non-log 
differences only). Several conclusions can be drawn from these figures. First, the Binomial 
model clearly under-performs as compared to both other models. For every path length, it 
predicts the number of Greens and the number of clusters worse than the two other models 
do. This means that the distribution of Greens, either in terms of their sheer number or in 
terms of their clustering on the paths of the NMP, is more concentrated than could be 
expected based on randomness as represented in the Binomial model. The concentration 
forces that are represented in the other models (homophily and path dependence) add 
explanatory power to the model. 

Second, the HP model generally does better than the pure Homophily model, although this 
differs systematically with path length. For short paths (2 or 3, i.e., mainly in the bottom-
25% SPNP values of the NMP), the Homophily model and the HP model perform 
approximately the same. For the number of Greens on a path, the HP model performs better 
for the entire range of paths lengths larger than 3. For the number of clusters, HP does better 
for paths up to length 18, after which pure Homophily does better. One may conclude from 
this that both concentration mechanisms, homophily and path dependence, play a significant 
role in predicting the concentration of Greens and Browns in the NMP. 

In Figure 8, we take a more detailed view on how well the three models predict the number 
of Greens on a path. In this figure, we have the non-log difference on the left-hand side, and 
the log differences on the righthand side. The three benchmark models are presented top-
to-bottom. It is important to note that, as indicated by the color bars with each of the figures, 
the scales of the differences are very different between the subfigures, especially between 
the log-differences, as a result of the fact that the three models have such differential levels 
of performance (as in Figure 7). 

Focusing first on the non-log differences, we see that what dominates in this case is the 
prediction error for a low number of Greens. Each of the models tends to under-predict the 
number of paths with zero Greens, for each path length, except very short paths (2 or 3) in 
the case of the Homophily and HP model. The extent of under-prediction rises with path 
length, i.e., it is more severe for longer paths. On the other hand, the number of paths with 
relatively few Greens is over-predicted. This is especially the case for just one Green, 
although only for paths up to about 18 or 19 long. For 2, 3 or 4 Greens, over-prediction keeps 
occurring also for long paths. Beyond 4 or 5 Greens, the differences between observed and 
predicted become indistinguishable from zero on the non-log scale. 
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Figure 8. Observed minus expected number of Greens, by path length and by benchmark model 

The log-difference figures on the righthand side provide further insight into the performance 
of the models with respect to paths with many Greens on them. Note that for very long paths, 
we do not observe some of the theoretically possible values for number of Greens. These are 
indicated by the shade (pure cyan) that corresponds to the lowest value on the scale, to 
represent –∞ (associated with log(0)). The impression that emerges from these plots is that 
for each path length, the large number of Greens is over-represented (under-predicted). But 
this is much less the case for the HP model than for the other two models.  
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Figure 9. Observed minus expected color-clusters, by path length and by benchmark model 

As an intermediate conclusion, we may say that the Homophily and HP benchmark models 
predict the concentration of Greens and Browns relatively well. The actual NMP has 
relatively many pure Brown paths, relatively few paths with just one (or a few) Greens, and 
homophily and path dependence come some way towards explaining these phenomena. 
Thus, the Greens are somewhat concentrated on the NMP, and homophily and path 
dependence seem to be relevant in explaining these tendencies (even if they cannot explain 
it fully).  
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Figure 9 provides the comparison for observed minus predicted number of color-clusters. 
This has many similarities with the previous figure, especially the under-prediction of paths 
with just one cluster (obviously, paths with zero Greens have just one color-cluster). We also 
see under-representation in the data of paths with 3 clusters, relative to all three models, 
except for long path lengths. For path length 11 onwards, we see complete absence of paths 
with many clusters, i.e., the entire upper-right corner has zero observed paths, which implies 
under-representation in the actual data (this is most obvious in the log-plots). Also, we 
observe relatively good performance of the homophily-plus model, at least for paths that are 
not very long (this is fully in line with Figure 7). Thus, our earlier conclusions on the 
importance of homophily and path dependence for clustering of Greens and Browns in the 
NMP are essentially confirmed by the results in Figure 9. 

 

6.1. What drives homophily? 

As a final step in our analysis, we implement an alternative regression model to the one in 
Table 1, by including a number of control variables drawing on the literature in innovation 
studies. Just as the homophily-plus-path dependency model of Table 1 endogenizes a part of 
the observed homophily in the pure homophily model, this extended model potentially 
endogenizes a larger part of observed homophily, because it takes into account a larger set 
of variables than just path dependence. Admittedly, we do not have a proper theory of 
homophily, so we use variables that are common in the patent citation literature (e.g., 
Criscuolo and Verspagen, 2008). 

Our first two variables control for timing. We have the filing year of the citing patent, and the 
lag in years between cited and citing patent. The fling year is expressed as a fraction between 
zero and one, where zero indicates the year 1978, and one is 2018. The citation lag is also 
expressed as a fraction, with zero indicating zero years and one indicating 40 years.  

In their most basic form, all other new variables that we add are defined as a binary dummy 
variable, although some of these may take a non-binary value due to fractional counting. 
Three of those variables refer to the citation type. The variable called Negative citation is 
equal to one if the citation is deemed (by the examiners) as either an X, a Y or an I type 
citation. All these citation types somehow prejudice the citing patent as not sufficiently novel 
(as compared to the cited patent). The variable Applicant citation is one if the citation was 
added by the applicant (D type citation). The last of the citation type variables (Family-link) 
is a dummy variable indicating if we added this citation as a family-relationship (see the 
description of our total citation network above). 

The next two variables capture geography. We have one dummy that is one if the cited and 
citing patent are from the same country, as indicated by inventor addresses. Because 
inventor countries are counted fractionally, this variable generally takes non-binary values 
(it is bounded between zero and one, however). The other geographical variable is one if the 
citing and cited country are geographical neighbors. Again, this is counted fractionally, 
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yielding values for the variable between zero and one. Finally, we have a dummy variable 
that indicates whether the cited and citing patent are from the same NACE sector. We use 
the PatStat concordance to NACE sectors, and again this is counted fractionally, yielding 
values between zero and one. 

The estimation results of the extended model are in Table 2. Besides the parameter estimates 
and their significance, this table also contains three extra columns, which provide 
information on the impact of the variable on observed homophily. The column that is labeled 
“Max effect” documents the (marginal) effect that is associated to an increase of the variable 
from zero to one. This is evaluated taking all other variables at their sample mean. The 
sample mean of each variable is also documented, along with its standard deviation.  

Looking at Green-to-Green citations first (top part of the table), we see that the maximum 
effect of the path dependence variable and the family-link both have large positive maximum 
effects. The citation lag and the different-NACE variables have relatively large negative 
effects (i.e., they decrease Green-to-Green. All of these are based on highly significant 
parameter estimates. Thus, belonging to the same patent family, belonging to the same NACE 
sector and a small citation lag seem to be the main driving factors in Green-to-Green 
homophily. 

 

Table 2. Logit estimation of the parameters of the extended homophily-path dependence model 

Explanatory variable Estimate Standard error (significance) Max effect Mean Std dev 
Sample with cited patent Green    
Path dependence 1.711 0.021 (***) 0.396 0.390 0.323 
Filing year citing 0.039 0.032 0.010 0.728 0.209 
Citation lag (years) -0.558 0.042 (***) -0.135 0.178 0.153 
Negative citation 0.069 0.015 (***) 0.017 0.265 0.441 
Applicant citation -0.012 0.038 -0.003 0.030 0.170 
Family-link  2.777 0.097 (***) 0.440 0.038 0.190 
Identical country 0.080 0.015 (***) 0.020 0.373 0.473 
Neighboring countries 0.044 0.020 (**) 0.011 0.139 0.334 
Different NACE sector -1.211 0.020 (***) -0.293 0.354 0.343 
Constant -0.213 0.027 (***)   0.447 
Sample with cited patent Brown    
Path dependence 2.973 0.020 (***) 0.310 0.029 0.100 
Filing year citing 0.680 0.022 (***) 0.017 0.664 0.220 
Citation lag (years) 0.468 0.026 (***) 0.014 0.190 0.155 
Negative citation -0.051 0.010 (***) -0.001 0.250 0.433 
Application citation -0.244 0.027 (***) -0.006 0.041 0.198 
Family-link  -5.583 0.299 (***) -0.032 0.029 0.169 
Identical country -0.128 0.010 (***) -0.003 0.377 0.474 
Neighboring countries -0.111 0.013 (***) -0.003 0.139 0.336 
Different NACE sector 0.576 0.011 (***) 0.017 0.314 0.346 
Constant -4.129 0.016 (***)   0.016 
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For Brown-to-Green citations, we must keep in mind that this type of citation has a high 
degree of homophily (pBB = 0.96 or pBG = 0.040 in the pure Homophily model). Therefore, 
the threshold for contributing significantly to homophily is much lower in this case. The path 
dependency variable stands out with a large potential impact, but note that in this sample, 
the average value of path dependency is only 2.9% (vs 39.6% in the Green-to-Green sample). 
There are very few citation pairs in this sample with path dependency indicator equal to one, 
but the few that have this have a large bonus probability have a Green citing patent. Other 
influential variables in this sample are the filing year of the citing patent, the citation lag and 
different NACE sectors (all of these have a positive impact, i.e., they decrease the degree of 
Brown-to-Brown homophily) and the family-link (negative impact, i.e., this increases Brown-
to-Brown homophily). 

Overall, these estimation results confirm the relevance of the path dependency mechanism 
as an additional factor to pure homophily. They also point to several other factors influencing 
homophily in the citation network, such as intra-NACE sector increases both Brown-to-
Brown and Green-to-Green homophily, citation type (prejudicing novelty and applicant 
citations), and the timing of the citation. Geographic distance does not seem to have a large 
impact. 

 

7. Conclusions 

We introduced a method that uses a (very) large patent citation network to extract a 
collection of technological trajectories that are aimed at describing the global main 
technological trends over the last decades. The method yields a so-called network of main 
paths (NMP), which consists of overlapping paths that represent the trajectories that 
represent large technology flows, as represented by patent citations. We characterized each 
patent on the NMP as either Green (contributing to the mitigation of greenhouse gas 
emissions) or Brown (non-Green). We propose that the NMP and the Green/Brown 
representation of its nodes can be used to represent the nature of the macro-technology field 
of Greentech.  

In terms of the content of Greentech, our main finding is that Green patents are rather 
concentrated in the NMP, i.e., we find relatively many paths that have either fewer Greens 
than expected (e.g., zero Greens, or all Brown paths), or more Greens than expected; and we 
find more paths with relatively few color-clusters. These findings are based on a theoretical 
model that predicts the statistical distribution of the number of Greens and the number of 
color-clusters over paths of a fixed length, i.e., we find a stronger concentration of Greens 
than this model predicts. 

We also have two alternative models, which introduce two separate mechanisms that will 
lead to concentration of Greens. We find that these models, especially the one that includes 
both mechanisms, predict the data in the NMP relatively well. The concentration-
mechanisms that these models include are homophily, which we define as the tendency of 
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Green patents to cite other Green patents, and the tendency of Brown patents to cite other 
Brown patents; and path dependence, which we define as the color of impact of upstream 
(occurring before the cited patents) on whether or not a citation is made by a Green patent. 
We find that the more Green patents lie upstream of a citation, the larger is the probability 
that the citing patent is Green.  

This implies that the macro-technology field of Greentech is characterized, at least to some 
extent, by a specific knowledge base of its own, that does not apply in the overwhelmingly 
Brown parts of the NMP. In other words, the development of Greentech is a matter of 
developing and applying a specific knowledge base, rather than of “greening” Brown 
environments without specific knowledge of Greentech. To the extent that this is reflected in 
homophily, it is mainly the result of Brown-to-Brown homophily, which we observe to be 
very strong, rather than of Green-to-Green homophily, which is weaker (the tendency of 
Green patents to cite Green patents is weaker than the tendency of Brown patents to cite 
Brown patents).  

The concentration of Green (and Brown) patents that results from homophily and path 
dependence has implications for policy makers who want to “green” the economy. It means 
that for green technology to emerge at a substantial scale, there needs to be investment in 
the green knowledge base. This will be associated with fixed costs, e.g., investment in 
academic study programs, public labs, etc. As individual firms may not be able to make these 
investments, there may be coordination failure that warrants public policy. At a much more 
down-to-earth level, we imagine that knowledge about the structure of our NMP may also 
help patent offices to improve the algorithms used to implement Y02 tagging. 

The dual purpose of the analysis in this paper was to present the method, and to apply it. 
With the method and the database available, applications to other (macro-)fields of 
technology are also possible. But our analysis also leaves open research questions in terms 
of Greentech. For example, we have been unable to touch upon the possibility of subdividing 
Greentech into more specific fields. The Y02 tagging system that we applied also defines 
eight subclasses, which can provide more information about the concentration of specific 
types of Greentech over the NMP. This could be researched using the same type of 
benchmark models as we applied. 

It will also be useful to investigate the explanatory factors for homophily and path 
dependence in Greentech citation networks in a more detailed way. Our final section 
provided some exploratory evidence on this matter, but it is beyond the scope of this paper 
to develop and test a proper theory of homophily and path dependence in citation networks.  
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Abstract 

We present a number of green technology patent landscaping exercises, based on a method 
that we developed earlier to identify the main technological trends in a very large (i.e., 
universal) patent citation network comprising all patented technologies. This method 
extracts a so-called network of main paths, where we interpret each path as a technological 
trajectory in the sense of Dosi (1982). We use co-occurrence on the technological trajectories 
as the main metric to build a network of technological relations, with green/non-green, the 
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which we find both very broad and general areas (such as ICT or medical and health), and 
specific green technologies, such as batteries, wind power and electric vehicles. In the 
geography- based map, we find specific European and non-European areas. In all our 
landscaping maps, non-green technologies play a large role, indicating that sectoral and 
geographical progress in greentech cannot be fully understood independently of developments in 
particular fields of non-greentech technologies.   
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1. Introduction 

In this paper, we report on a patent landscaping exercise for green technology. Whereas the 
mapping of technological trends on the basis of patent data is usually performed using 
metrics calculated at the level of individual patents or patent citation pairs, we argue that it 
may be more appropriate to use a metric that is itself defined at the level of a technological 
“trend”. For this reason, we build our landscaping exercise on our earlier work on 
technological trajectories (Nomaler and Verspagen, 2019).  

A technological trajectory is perceived as a main technological trend that takes shape over 
time, and which consists of cumulative, and often incremental, inventions influenced by the 
economic and social environment. Based on Hummon and Doreian (1989), a growing 
literature has been established that uses patent citations to find technological trajectories, 
or main paths as they are also called in this literature. This literature focuses on specific 
technological (or scientific) fields that are defined a priori (e.g., fuel cells, or digital network 
communication). Nomaler and Verspagen (2019) propose a method that extends the 
Hummon and Doreian-based methods to extracting main technological trends from a very 
large patent citation network covering all technologies patented under the terms of one legal 
jurisdiction (i.e., EPO).  

This enables the application of the Hummon and Doreian-based methods to so-called macro-
technology fields, i.e., sets of distinct technologies that are in pursuit of a common and 
coherent goal. Like in our previous paper, the macro-technology field that we are interested 
in here is green technology, which we define as technologies aimed at combatting climate 
change. Whereas the concentration of green patents on technological trajectories was the 
topic of our previous paper, this paper looks at how the green technological trajectories that 
we find can be used to landscape green technology. 

We understand landscaping as an impressionistic method that uses relations between 
patents, in our case patents occurring on specific technological trajectories, to extract and 
describe main technological trends and relationship between technological (sub-)fields. In 
our case, the landscaping exercise will consist mostly of visualization of the technological 
relationships in our database of green technological trajectories. The use of technological 
trajectories as the basic unit of analysis in the landscaping exercise is a key element of our 
analysis. In our view, this is the most appropriate way of proceeding if the aim is, as in our 
case, to map the main technological trends in a macro-field. Technological trajectories are 
aimed at capturing these main trends, whereas individual patents capture individual 
inventions, and patent citation pairs capture bilateral relationships between inventions.  

Our previous analysis has already shown, among other things, that non-green (we will adopt 
the term brown for this) patents are an important part of green trajectories (which we define 
as a trajectory with at least one green patent on it). Thus, while there is some degree of green 
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clustering, almost no green technological trajectories develop without a brown influence. It 
seems that progress in greentech cannot be fully understood independently of developments 
in particular fields of non-greentech technologies. Among other things, our landscaping 
exercise is expected to bring this out, i.e., to show the role of non-green technology in 
greentech. 

The rest of this paper is structured as follows. In the next section, we outline the conceptual 
backgrounds of our analysis. This covers the idea of technology as a sequence of incremental 
changes following a breakthrough invention, i.e., it introduces the idea of technological 
trajectories as paths on metaphorical technological landscapes. This section also introduces 
the idea of main path analysis to map these technological trajectories or paths (we use 
trajectories and paths mostly as synonyms). Section 3 provides a brief, non-technical 
overview of our method to find technological trajectories in (very) large patent citation 
datasets. It also describes the construction of the basic dataset on which we apply this 
method, as well as a brief overview of the so-called network of main paths that results from 
the trajectory-extracting exercise, including a brief overview of the green content of this 
network of main paths.  

Section 4 provides the main part of our analysis, i.e., the landscaping exercises. This section 
starts with a sub-section that briefly introduces the idea of patent landscaping, and the 
general nature of the metrics that it uses. This sub-section also argues in some more detail 
why we propose to calculate these metrics on technological trajectories, rather than on 
individual patents or patent citation pairs. Sub-section 4.1. concludes with a detailed 
exposition of the metrics and visualization methods that we use. The next sub-sections in 
section 4, i.e., 4.2 and 4.3, provide our main results in the form of maps containing the 
landscaping results. In section 4.2, we do this using a perspective of technology classes (4-
digit IPC) and the green/brown distinction. Section 4.3 uses geographical (country) 
perspective combined with the green/brown distinction. Section 5 summarizes the 
argument and provides the main conclusions.  

 

2. Technological trajectories and main path analysis 

Dosi (1982) introduced the idea of technological paradigms and technological trajectories. 
In a nutshell, his proposal is that technological trends are both influenced by the general 
context of scientific and technological knowledge (the paradigm) and by economic 
opportunities and restrictions (trajectories). Dosi’s starting point is that engineers will tend 
to search for technological solutions in the neighborhood of a particular set of opportunities, 
and that such a neighborhood tends to be opened up by a paradigm shift that follows, for 
example, from basic research, or from practical experimentation. Although such a paradigm 
shift, in principle, opens up a number of possible trajectories, there will usually only be a 
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selective number that will actually be realized, and this is decided on the basis of specific 
societal circumstances, including economic markets.  

Thus, the idea of a technological trajectory is based on local search. It also gives rise to the 
idea of a technological landscape, which is a metaphor that portrays technological 
knowledge as configurations of component building blocks (e.g., Kaufmann, 1993; Kaufman 
et al. 2000). By changing one of the components of an existing piece of knowledge, or by 
combining building blocks from several pieces of knowledge, new knowledge can be created 
from existing knowledge. Because the pieces of knowledge are related to each other by the 
components that they share, distance between technologies can easily be operationalized. 
The metaphor of a technological landscape then boils down to arranging the knowledge 
pieces relative to each other based on how close they are. 

A central tenet of the concept of a technological landscape is that performance of 
technologies differs and is somehow dependent on the position of the technology in the 
landscape. Thus, the inventor who searches the landscape will find particular locations of 
high or low opportunity and value, corresponding to peaks and valleys in the landscape 
metaphor. Firms will want to occupy the high value/opportunity locations of the 
technological landscape, and thus will direct their search efforts towards there. A 
technological trajectory emerges from this search process, and is a specific and collective 
path through the technological landscape. This path is heavily shaped by both technological 
opportunities and the economic incentives that the economic environment (the market) 
provides.  

The historical case of steam engines may serve as a brief illustration (Nuvolari and 
Verspagen, 2009). Although based on a common technological principle, steam engines were 
applied in many different economic contexts, leading to a wide variety of designs that were 
very much adapted to the incentives found in those contexts. In Cornish mines, where steam 
engines were used to pump up water from flooded mine galleries, the economic incentive 
was saving on expensive coal, which led to very large-scale versions of the low-pressure 
engine that James Watt brought to Cornwall in the late 18th century. On the other hand, in 
the application of steam engines to railways, such large designs were unusable because the 
engine had to be mobile. As a result, a trajectory emerged of much smaller high-pressure 
engines that could deliver adequate power for transportation.  

Dosi’s conceptualization of technological trajectories is broadly compatible with work in the 
management field (e.g., Levinthal, 1997; Fleming and Sorensen, 2004; Aharonson and 
Schilling, 2016). These authors propose that technological choice of firms can be represented 
as a process of recombinant search on a technological landscape, and that much of this search 
is local, i.e., in the immediate neighborhood of where search was previously located. As a 
result, technological efforts by firms will cluster in technology space (e.g., Aharonson and 
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Schilling, 2016). A logical strategy is to use prior knowledge about where the feasible and 
valuable technologies are located (Stuart and Podolny, 1996; Fleming and Sorensen, 2004). 
Such prior knowledge accumulates from the firm’s own prior research, and, to the extent 
that they are observable, other firms’ research efforts. Prior research results are guideposts 
(Sahal, 1981) that help current and future research. This leads to a process of dynamic 
increasing returns, as firms seek out the regions of technology space that are most valuable 
in terms of their economic returns.  

Whether prior knowledge leads to useful information about where new opportunities can be 
found depends on the shape of the landscape. If valleys and peaks occur in the form of smooth 
transitions, prior knowledge will be useful, as it will allow the researcher to follow an 
upward slope, and ultimately reach a (local) peak of valuable knowledge. However, if the 
landscape is more “rugged”, information about prior research may be less useful, i.e., when 
spots of high and low opportunity are found randomly and independently of each other. In 
Kaufman’s model (Kaufmann, 1993; Levinthal, 1997), a parameter tunes the ruggedness of 
the landscape. Intermediate values of ruggedness imply both that clustering on the basis of 
prior knowledge is useful, and that the landscape contains identifiable peaks and valleys 
(Billinger et al., 2014). 

Serendipity and basic research are ways in which search in the technological landscape may 
occur over larger distances. This may open up new areas of the technological landscape, 
which can then be explored by local search. By making a large (random) jump in the 
technology landscape, access to a previously unknown local peak may be gained, although 
this must be realized by (slowly) climbing the slope that leads to the peak. Viewed in this 
way, the process of technological search combines elements of randomness (which areas of 
the landscape are opened up) and systematic exploration by collective action of the firms 
that are active in a specific field (Sorensen and Fleming, 2004).  

Our analysis uses patent citations to identify technological trajectories. The legal IPR 
framework holds that cited patents (identified by the applicant and/or the patent examiner) 
constitute the prior ‘state-of-the-art’ against which the novelty of the citing patent’s 
constituent claims are to be assessed by the patent examiner respectively. Thus, a citation 
indicates a close (directed) relation from the cited to the citing patent, in the sense of an 
‘inventive step’ (be it marginal, incremental, or substantial) or as maintained by various 
scholars of innovation, an indication of some sort of ‘knowledge flow’ (Trajtenberg and Jaffe, 
2002). This idea has been key to a growing strand of literature that operationalizes the 
notion of a technological trajectory in terms of an unbroken chain of citations, thus an 
intertemporally-ordered set of patents where there exists a citation link between each pair 
of immediately subsequent patents.  
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Let us illustrate this by a stylized example (Nomaler and Verspagen, 2019). The top panel of 
Figure 1 depicts a toy patent citation network as a graph. The network has 12 patents, 
depicted as nodes which are labeled P1 – P12. Edges (lines) indicate a citation, and the 
direction of the arrow to an innovative step taken by the citing patent (say P4) over the cited 
one (each of P1 and P2.) That is, as of its examination date, the claims in patents P1 and P2 
(but not P3) were deemed by the examiner as the state of the art against which the novelty 
of P4 is to be assessed. P1, P2 and P3 cite no other patents in this network, thus are referred 
to as ‘start-nodes’, while P11 and P12, which are cited by no other patent of the network, are 
‘end-nodes’. Any chain of subsequent citation links that connect a start-node to an end-node 
(i.e., by a walk in the direction of the arrows) is a full path.  

 

 
(a) Total citation network 

  
(b) Reduced network (Network of Main Paths) 
 Figure 1. A stylized example network (a) and its algorithmically reduced form (b) 

 
For example, the connected citation chain that connects P1 to P11 via patents P4 and P10 is 
one path. Clearly this chain describes a cumulative process (of technical progress) that 
begins with P1 and adds 3 subsequent inventive steps by P4, P10 and P11, each updating the 
state-of-the-art. However, this trajectory is neither the only one that connects P1 to P11 
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(there is also the one that goes via P4-P7-P9-P10), nor the only one that leads to P11. In fact, 
there are 11 ways in which a walk that emanates from the start-nodes P2 or P3 may end up 
at P11. Similarly, there are 11 different ways to reach P12 (the one and only other end-node 
of the network) starting from either of the three start-nodes, which, also including P1-P4-
P10-P11, make a total of 23 trajectories that can be enumerated in this simple stylized 
network.  

For each of the identified paths, one can read through the (claims and/or the abstracts of 
the) participating patents in the order of appearance on the path, and thus form an historical 
narrative of the technical progress that builds incrementally on the path. Every path-
narrative (23 in our stylized example) will capture some aspect of the technological trends 
that characterize the total network. However, due to the many patents and the citation links 
that are common to several paths1, there will be strong overlap among the various 
narratives. Too many (partially overlapping) narratives, no matter the complementarities, is 
not a practical way to understand the main trends in a citation network, especially given that 
in actual networks of interest (comprising tens or hundreds of thousands of patents) one can 
identify (perhaps, uncountably) many trajectories. The main question that underlies the 
early work in the growing literature on ‘main paths’ has been whether one can identify only 
a single (i.e., the most ‘significant’) path, or a few paths, that provide the narrative that 
captures or highlights the essence of development through the technology landscape, 
summarizing the historical progress in a given technical field or application area of interest.  

The exploration of this question has been based on the literature that follows Hummon and 
Doreian (1989), who proposed a method for analyzing directed and a-cyclical networks. This 
is the typical network that is formed by citations, either in the scientific literature, or in 
patent literature. The Hummon and Doreian-based methods which will identify the 
technological main paths by the reduction of a complex citation network to one or few 
trajectories, has been seen as the operationalization of a technological trajectory (Mina et al., 
2007; Verspagen, 2007).  

This was initially done for individual technological fields (e.g., Mina et al., 2007; Verspagen, 
2007; Liu and Lu, 2012), as a way to quantify more qualitative data from engineers or the 
history of technology. The early work, the findings of which have often been verified by 
experts in the technical field of interest, has successfully demonstrated that, despite the 
enormous reduction/pruning (of patents and their citations)2, Hummon and Doreian-based 

 
1 For example, consider the two trajectories P2-P6-P9-P10-P11 and P3-P5-P6-P8-P9-P10-P11, the last three 
steps of which are identical.  
2 In terms of our stylized example in Figure 1, the original Hummon and Doreian (1989) algorithm would 
identify the main paths as P2-P5-P6-P8-P9-P10-P11 and P3-P5-P6-P8-P9-P10-P11 by pruning 10 of the 17 
citation links and 4 (P1-P4-P7-P12) of the 12 patents. 
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methods can well capture the ‘main trends’ of the developments and progress through the 
technology landscape.  

In a previous paper (Nomaler and Verspagen, 2016), we were able to analyze a much larger 
set of patent citations that represent the entire patent literature, and hence the entire 
spectrum of patented technologies that have been subject to human invention over the last 
decades, rather than a single technology field. By enlarging the scope in this way, we are able 
to look at a multitude of technological trajectories, and the way that these paths interact. Our 
emphasis can thus shift from identifying single main paths to a large network of paths 
covering all (patented) technologies at once, providing the opportunity to address research 
questions that go beyond the mere provision of a historical narrative for a selected field. 

In Nomaler and Verspagen (2019), we already developed this large-scale network algorithm 
further in order to analyze so-called ‘green’ technology, which we consider to be a macro-
field of technology (a collection of distinct technology fields with a common and coherent 
purpose). Green technology, which we define as technologies aimed at climate change 
mitigation, consists of a large collection of distinct technology fields, e.g., in solar and wind 
energy, batteries, fuel cells, nutrition, agriculture, etc. The current paper is a follow-up in this 
larger project, where we offer a more visual interpretation of the network of main paths with 
greentech content. 

 

3. Constructing the network of main paths 

The network of main paths is constructed from the total network of citations, which we 
operationalize as a citation network between PatStat application ids for which the 
application authority is ‘EP’.3 Citations take place between publications, while an application 
id may be associated with more than one publication. Thus, we consider a citation from at 
least one publication related to application X to at least one publication related to application 
Y as a citation from application X to application Y. In order to guarantee that we avoid cycles 
in the citation network, we consider a citation as valid only if the application date of the citing 
application is at least one day later than that of the cited application.  

The citation network that is formed in this way has 2,758,196 citations linking 2,033,487 
EPO patent applications. Thus, out of the 3,561,211 EPO patent applications reported in 
PatStat, 1,527,724 (about 43%) are not represented in the citation network, simply because 
these neither cite or are cited by any other EPO patent. This citation network is enhanced in 
two ways, both of which add links to the network that are not actually present in the original 
set of intra-EPO citations. First, we add technological paths that are not captured exclusively 
by EPO patents, by looking for any indirect citation linkages between EPO patents that exist 

 
3 We use the 2019a edition of PatStat. 
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through other patent offices, and add these as direct linkages in our network. For example, 
if EPO-application A is cited by US application B and US application B is cited by EPO 
application C, then we add a link from EPO application A to EPO application C in our network, 
even if no actual citation exists between those two EPO applications.  

Our second extension deals with patent families, as documented by the DocDB families in 
PatStat. Patent family membership indicates a degree of similarity between the documents 
in the family, i.e., a family can be seen as covering a single invention by multiple patent 
applications. However, we found that treating a single family as a single invention by 
aggregating citations into a single link between families leads to heavy cycling in the citation 
network.4 In order to avoid cycles, we deal with family membership by first ranking all EP-
members of a family in terms of their application date, and then add links from the oldest 
EP-member to the next, and from this EP-member to the next, etc., until we reach the newest 
EP-member of the family. In other words, we consider a family as a technological sub-path 
in itself. This procedure will prevent cycles from forming, while still recognizing the 
similarities between inventions in a family. In this way, we have an extended patent citation 
network that consists of 2,771,440 patent applications (about 78% of all applications at the 
EPO) and 9,090,460 citations between them. This covers the period 1978 – 2018. 

The next step in our analysis is to construct the network of main paths in the total citation 
network. The mathematical details of our method to do this can be found in the earlier paper 
(Nomaler and Verspagen, 2019), here we only provide a general description of our method 
and how it differs from previous methods.5 Like in Hummon and Doreian (1989) and 
methods that follow that seminal paper, the network of main paths is a systematically-
reduced subset of the larger network, obtained by eliminating the patents and/or citations 
of ‘lesser significance’.  

The first stage in constructing the network of main paths is to calculate an index of (relative) 
importance for each citation link in the network. These are referred to as traversal weights. 
Several alternative link weighing principles are proposed by Hummon and Doreian (1989) 
and later by Batagelj (2003). We choose the commonly used SPNP (Search Path Node Pair) 
which is the number of times a given citation link is visited if one follows through all possible 
upstream paths from all (direct and indirect) ancestors of the cited document (including 

 
4 For example, application P and application Q could be members of the same family, but typically have different 
application dates. Then if patent Q cites another document with application date later than patent P, cycles will 
emerge easily in the aggregated citation network. 
5 The NMP of our citation network is available as a database (comma-delimited text file which can be built into 
a relational table under any database engine), and can be downloaded at 
https://dataverse.nl/dataset.xhtml?persistentId=hdl:10411/ZDCQY3. The database contains all information 
on application id of the NMP nodes (patent documents), all trajectories (and trajectory groups) the node 
belongs to, and which position it takes on each trajectory. The database can be linked to PatStat by application 
id (appln_id) to obtain other patent information (such as the green/Brown nature). 

https://dataverse.nl/dataset.xhtml?persistentId=hdl:10411/ZDCQY3
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itself) to all (direct and indirect) descendants of the citing document (including itself). We 
eventually apply a logarithmic transformation (with base 2) on the SPNP values.  

For an illustration, let us revisit the stylized network example on Figure 1 (upper panel). The 
citation link that directly connects P1 to P4 lies on sub-trajectories that (directly or 
indirectly) connect one patent (P1) to upstream other patents in 8 different ways: (1) P1 to 
P4 (directly), (2) P1 to P7 via P4, (3) P1 to P9 via P4-P7, (4) P1 to P10 via P4, (5) once again 
P1 to P10 but via P4-P7-P9, (6) P1 to P11 via P4-P10, (7) once again P1 to P11 but via P4-
P7-P9-10, and (8) P1 to P12 via P4-P7-P9. Thus, the SPNP value of the citation link between 
P1 and P4 is 8. In logarithms, log2(8) =3, which is the value one finds on the network graph. 
However, the direct citation link between P6 and P9 lies on 20 sub-paths that establish 
(directly or indirectly) pairwise connections between individual elements of the patent set 
{P2, P5, P6} and the elements of the upstream set {P9, P10, P11, P12}. Thus the logarithmic 
SPNP value of the citation link P6-P9 is log2(20) =4.32.6 The most significant citation link of 
the network is P8-P9, which lies on 36 different trajectory segments that pairwise connect a 
set of 5 downstream patents {P2,P3,P5,P6,P8} to a set of 4 patents {P9, P10, P11, P12}. The 
individual significance of this citation link is thus log2(36)=5.17. 

In Hummon and Doreian (1989) and the largest part of the related literature that follows, 
the second stage of the method identifies a so-called main path in the network. The main 
path is a chain of citations that is constructed on the basis of some heuristic that aggregates 
the individual traversal weights (SPNP) of the constituent citation links of the chain. Usually, 
the main path is identified by a ‘priority first search’ algorithm, which, starting from a given 
start-node, follows consecutive citation links stepwise, choosing each time the next forward 
citation link with the highest SPNP value until hitting an end-node. In case of a tie, the 
trajectory branches out since the algorithm separately takes each link with the highest link 
value and follows each emerging branch to the end. 

Verspagen (2007) starts from each start-node in the network, and constructs (on the basis 
of the ‘priority first search’ principle) a collection of main paths that is referred to as the 
network of main paths (NMP). The top main path (TMP) is a single trajectory in the NMP, 
identified, for example, as the path between particular start- and end-nodes that are 
considered of special importance (Hummon and Doreian, 1989). As stressed by Liu et al. 
(2012), it is important to realize that the priority first search algorithm is a heuristic that 
does not guarantee a global maximum in the value of the summed (or multiplied) SPNP over 
the found main path(s). In other words, for any start-node, there may well be forward paths 
that have a higher aggregate SPNP value than the main paths found in the priority first search 
algorithm.  

 
6 Actually, the number of node pairs which are connected via P6-P9 is 3x4=12 (thus not 20), however the SPNP 
metric also considers the different ways in which the pairs are connected indirectly.  
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This is related to another arbitrariness identified by Liu et al. (2012): instead of starting from 
a start-node and implementing a forward search, one may just as well start from an end-note 
and search backwards. The forward search method constructs an NMP which incorporates 
at least one trajectory that emanates from each start-node of the original network, although 
only a subset of the end-nodes of the original network will make it to the NMP. With the 
backward search, all end-nodes of the original network, but only a subset of the start-nodes 
will end up in the NMP. Furthermore, the local (priority first) backward search might yield a 
rather different set of trajectories than the local (priority first) forward search, including a 
different TMP.  

Our method of constructing the NMP provides three novelties. First, instead of the usual 
priority first forward search heuristic, we use a combination of both forward and backward 
search7 to maximize the log2(sum)8 of SPNP between all combinations of start-nodes and 
end-nodes that are connected in the citation network. Second, we separate the elimination 
of patents and citations in the procedure of constructing the NMP. Some citations are 
eliminated first, leaving all patents in the NMP, and only after this do we start (optionally) to 
prune this NMP by removing both patents and their inward and outward citations. Third and 
finally, while we prune the NMP, we remove entire paths (based on their log-sum of SPNP) 
rather than individual patents. This has the advantage that the connectedness of the NMP 
remains largely intact. In this way, we can prune the NMP at any desired level, from no 
pruning at all to only leaving the TMP.9 

Let us go back to our stylized example in Figure 1 for further illustration. As explained before, 
the values indicated on the citation links are the respective SPNP values (in logarithm with 
base 2). The original Hummon and Doreian (1989) algorithm as well as the variants refined 
by Liu et al. (2012) would both identify the main paths as P2-P5-P6-P8-P9-P10-P11 and P3-
P5-P6-P8-P9-P10-P11, by pruning 10 of the citation links and four (P1-P4-P7-P12) of the 12 
patents.  

Our algorithm, by pruning only 6 citation links and none of the patents in the full network, 
would instead yield the NMP depicted in the lower panel of Figure 1. It can easily be verified 
that the number indicated next to a patent (in square brackets) is the (log2-)sum of the of 
SPNP values all the citation links that are on the most significant trajectory which contains 
the patent in question. For example, among the log2(sum) SPNP values of all 12 possible 
trajectories on which P6 can be found, 28.3 is10 the maximum value that belongs to the 

 
7 Emanating from each node of the network, we identify the best forward and backward sub-path and merge. 
8 This is clearly equivalent to maximizing the multiplicative product of the SPNP values. 
9 Our TMP is identical to the one identified by Liu et al. (2012). 
10 4+4.91+4.64+5.17+5.32+4.58 corresponding to the log2(SPNP) values of the citation links P2-P5, P5-P6, P6-
P8, P8-P9, P9-P10, P10-P11 respectively.  
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trajectories T1={P2-P5-P6-P8-P9-P10-P11} and T2={P3-P5-P6-P8-P9-P10-P11}. Of course, 
next to all the patents that participate in these two trajectories (i.e., P2, P3, P5, P8, P9, P10, 
and P11) we also find the number 28.3 in square brackets, simply because these two 
trajectories are also the most significant ones to which each of these other patents 
participate individually.  

The next highest log2(sum) SPNP value we find next to a patent (P12) is 23.04. P12 is only 
connected directly to P9 and the most significant (downstream) sub-trajectories that lead to 
P9 are P2-P5-P6-P8-P9 and P3-P5-P6-P8-P9. That gives us two new (second-best) 
trajectories T3={P2-P5-P6-P8-P9-P12} and T4={P3-P5-P6-P8-P9-P12}. The next and the 
least log2(sum) SPNP value (i.e., 21.14) that we find belongs to the patents that are on the 
sub-trajectory P1-P4-P7. Patent P7 is only connected directly to P9 and the best trajectory 
that emanates (upstream) from P9 is P9-P10-P11. This gives us our final full trajectory 
T5={P1-P4-P7-P9-P10-P11}. The union set of T1, T2, T3, T4 and T5 is our NMP.  

In case we (optionally) wanted to reduce this NMP by one step, all we would need to do 
would be to remove the patents that display the lowest (log2-)sum SPNP value 21.14 (i.e., P1, 
P4, and P7) which will effectively drop T5. Going even one step further, and eliminating P12 
(with the next least log2(sum) SPNP value, 23.04) will effectively drop the trajectories T3 and 
T2, leaving behind only the top trajectories of the network, T1 and T2.  

Furthermore, observe that T1 and T2 overlap on six of their seven patents exactly at identical 
positions (in terms of the order of appearance), with P2 and P3 making a tie (i.e., both have 
the same log2(sum) SPNP value). Accordingly, we can call the set {P2, P3, P5, P6, P8, P9, P10, 
P11} a ‘trajectory group’, where a trajectory group is a set of trajectories that share patents 
and have identical log2(sum) SPNP value and length. 

As already stressed, we apply this method to the entire citation network for EP patents. Note 
that in this paper we do not opt for the (optional) patent pruning explained in the paragraph 
above, thus the NMP that we constructed contains the same number of patents as in the total 
citation network (2,771,440), but reduces the number of citations from the original 
9,090,460 to 3,494,708. In the NMP, there are relatively many paths of relatively short length. 
Path length 2 (shortest possible) is the most frequent one (about 525,000 paths). 28 is the 
longest path length, but there are very few (only 14) paths of this length.  

With patents as our smallest unit of analysis, we operationalize green technology as a specific 
subset of patents that is aimed at greenhouse gas emission mitigation. This has the advantage 
that we can use the so-called Y02 tag which the major patent offices of the world assign to 
patents. The Y02 tag is in fact a technology class in the Cooperative Patent Classification 
(CPC) scheme. Using the Y02 CPC class, we classify each patent in our network as either green 
(having a Y02 tag) or brown (not having a Y02 tag). Looking only at trajectories that contain 
at least one green patent, we find relatively few of them (about 660,000 of a total of 3.7 
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million, or about 18%).11 The number of trajectories with some green peaks at path length 6 
(about 65,000 paths), while all of the longest (length 28) trajectories have some green.  

 

 

 
Figure 2. Histogram of observed numbers of greens on a path (log), NMP  

 

In Figure 2, we enumerate all paths that are found in the NMP, and ask how many greens are 
found on the path. Minimum path length in the figure is 2 (there are no isolates in the NMP), 
and as mentioned earlier, maximum observed path length is 28. Path length is on the vertical 
axis, so that each horizontal row represents paths of identical length. The horizontal axis of 
each figure displays the number of greens on a path, and the color shading indicates the 
relative frequency in the network. These frequencies are the log of the share of a particular 
path type in the entire network. White cells indicate impossible combinations (number of 
greens larger than the path length), and the lightest shade (cyan) indicates cells with zero 
observed cases (for example, we observe no purely green paths of length 28). The figure 
shows a strong concentration of paths with zero greens or just one green. Paths of length 
(about) 5 – 15 are most often found to contain relatively large numbers of greens. Longer 
paths mostly occur with only one or no green at all.  

 

 
11 In terms of ‘trajectory groups’: 246,551 of a total 1,262,472, or about 19.5% 
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4. Landscaping green technological trajectories 

4.1. Conceptualizations 

Patent landscaping is a set of tools that can be used to investigate and describe (recent) 
technological developments in a technological area, often used by research and development 
practitioners or policymakers to map current developments in a field (see, e.g., Bubela et al., 
2013). Visualization, especially of networks, is a powerful tool used in patent landscaping to 
provide a quick and overall impression of relations between different parts of the knowledge 
base in a field (see, e.g., Federico et al., 2017).  

Main paths or even networks of main paths can be visualized in a direct way, as a network of 
patents and citation links between them. As such, main path analysis is one of the tools in the 
patent landscaping toolbox. However, this direct way of visualizing the NMP is not feasible 
in the case of our network. Even the subset of trajectories with at least one green patent is 
too large to be visualized as an NMP. Therefore, we have to resort to a different way of 
visualizing the network. Several of such ways can be found in the existing literature (e.g., 
Leydesdorff et al., 2017; Yan and Luo, 2017; Kay et al., 2014).  

Many of these methods are based on some form of co-occurrence. For example, if individual 
patents or publications can be characterized by keywords or title words, landscaping can 
take the form of creating and visualizing a network of such words, where the relationships 
between the terms (words) is defined on the basis of how often they occur together, in a 
patent or in a publication. One may find, for example, that the keywords “battery” and 
“electric vehicle” often occur together in a patent, but that these terms very rarely co-occur 
with terms such as “wireless communication” or “digital information”. In a network 
visualization, the terms “battery” and “electric vehicle” would then be mapped close to each 
other, pointing to a cluster of technological developments related to electric cars. Instead of 
co-occurrence of keywords or title words, one may also use co-citations as a measure of 
relatedness. For example, if two authors are often cited in a common publication, it is likely 
that their work is closely related.  

Co-occurrence is usually measured at the level of individual patents or publications, but the 
resulting co-occurrence measures are often aggregated to higher-level categories, such as 
technology classes (in the case of patents), or journals (in the case of scientific publications). 
This enables the landscaper to analyze large datasets, and visualize them at an aggregation 
level that yields a proper impression of the trends that the landscaping exercise is after. Thus, 
for example, using information at the level of individual patents, one may ask which 
technology classes (e.g., IPC codes) co-occur often, and use this information to visualize a 
network of IPC codes. By observing which IPC codes are mapped close to each other, one 
may get an impression of in which areas the main technological developments are taking 
place.  
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In this paper, we use this kind of technological landscaping. In line with our interest in 
technological trajectories and using patent citations to map them, patent citations are our 
main source of information for the landscaping exercise. However, rather than constructing 
our measure of relatedness on the basis of data in patent citation pairs, we use the 
trajectories (paths) that are found in our NMP as the basic unit of analysis. Continuing the 
example of a network of IPC codes, we ask which IPC codes tend to co-occur on individual 
trajectories. Note that this is a deviation from existing practice, which is to measure co-
occurrence at the level of individual patents (which IPC codes co-occur in patent 
descriptions?) or patent citations (which IPC codes co-occur  citation pairs?).  

Our proposal is that defining co-occurrence at the level of technological trajectories is the 
preferred procedure if one is interested in mapping broad technological trends. Individual 
patents are indicators of inventions, a patent citation pair is an indication of a relation 
(including the possibility of a knowledge flow) between inventions, and trajectories (built 
on patents and patent citations) show the way in which individual inventions and their 
bilateral relations are coherent in terms of the broader trends. Thus, if the aim of the 
landscaping exercise is to outline the relation between broad trends of technological 
development, trajectories (not individual patents or patent citation pairs) are the most 
obvious unit for calculating co-occurrence metrics. Our analysis here can be seen as an 
attempt at proof-of-concept of this main idea. 

Let us illustrate this with two examples. Figure 3 depicts two actual trajectories identified by 
our algorithm. On the first trajectory (upper panel of Figure 3) of length 12, we see four 
brown patents historically followed by eight green patents. All the green patents belong to 
the CPC category Y02T 10 (Climate Change Mitigation Technologies Related to Road 
Transport of Goods or Passengers). Looking at the patent titles, we observe the evolution of 
the usage of continuous variable transmission (CVT) systems, into electric and hybrid 
vehicles. It is indeed well-known that CVT systems12 that were originally developed (around 
late 1950s) for vehicles with a single combustion engine (clearly, browntech), have provided 
the basis for the design of more sophisticated systems (e.g., Electric Variable Transmission, 
e-CVT) that are able to apply power from multiple sources of actuation to one output, such 
as a hybrid vehicle (greentech) which has both a combustion engine and an electric motor 
(and in some cases also a flywheel). This trajectory nicely captures that main trend.  

The trajectory features inventors from 6 different countries, where Japanese inventors hold 
50%, German inventors 16.67%, and four other countries each 8.33% of the 12 patents.13 

 
12 In contrasts with other transmissions that provide a limited number of gear ratios in fixed steps, a CVT system 
offers a continuous range of ratios, and thereby allows an engine to operate at a constant RPM while the vehicle 
moves at varying speeds. 
13 Throughout the analysis, we attribute patents to countries solely on the basis of location of the inventors. 
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Individual patents have one to (at most) four IPC codes (at 4-digit resolution) each. However, 
when we look beyond individual patents and consider the trajectory as a whole entity, we 
find 7 different IPC codes, F16H14 showing up 4 times exclusively on brown patents, B60K15 
appearing 10 times on both green and brown patents, and the rest (B60W, B60L, F02D, A01B, 
and B62D) showing up (respectively on eight, four, three, one and one times) exclusively on 
the green patents.  

 

 
 

 
Figure 3. Two actual examples of a green trajectory 

 

 
14 Gearing. 
15 Arrangement or mounting of propulsion units or of transmissions in vehicles. 

Hydrogenation of esters using alkali doped heterogeneous group VIII transition metal catalysts.
| VAPOUR PHASE HYDROGENATION OF ESTERS
| | HYDROGENATION OF CARBOXYLIC ACID ESTERS TO ALCOHOLS
| | | Method of treating gaseous effluents with a catalyst containing cerium and copper oxides
| | | | Exhaust gas cleaner and method for cleaning exhaust gas
| | | | | Exhaust gas purifying catalyst
| | | | | | Method for production of porous composite oxide
| | | | | | | Exhaust gas purification catalyst
| | | | | | | | Removal of particles from exhaust gas from combustion engines run on…
| | | | | | | | | CATALYTICALLY ACTIVE PARTICULATE FILTER AND USE OF SAME
| | | | | | | | | | WALL-FLOW FILTER COMPRISING CATALYTIC WASHCOAT
| | | | | | | | | | | EXHAUST GAS PURIFICATION DEVICE
| | | | | | | | | | | |
1 <-- 2 <-- 3 <-- 4 <-- 5 <-- 6 <-- 7 <-- 8 <-- 9 <-- 10 <-- 11 <-- 12

1981 1984 1986 1988 1995 1999 2004 2005 2007 2012 2014 2016
US GB GB GB JP JP JP JP DE DE GB JP

US
Y02P  20 Brown Brown Y02T  10 Brown Brown Y02T  10 Y02T  10 Y02T  10 Y02A  50 Y02T  10 Y02T  10

Y02T  50
B01J B01J B01J B01J B01J B01J B01J B01J B01J B01J B01J
C07C C07C C07C

C07B
B01D B01D B01D B01D B01D B01D B01D B01D B01D

F01N F01N F01N F01N
C01B
C01F
C01G
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Our second example is once again an actual trajectory of length 12, and once again the 
trajectory comprises four brown and eight green patents. Similar to our first example, we 
find the brown patents showing up earlier than the green ones. However, the first and the 
fourth patents of the trajectory are green in this case. As in the first example, this trajectory 
is also related to the automotive industry, however the context of greentech is quite different 
(i.e., exhaust gas filtering in fossil-fuel-based vehicles). In addition to the dominance of Y02T 
10 (by showing up on the majority of the green patents), we find two more green 
subcategories here: Y02P 20 (Technologies relating to chemical industry/ purification) and 
Y02A 50 (Air quality improvement or preservation, e.g., vehicle emission control…).  

The IPC code B01J16 shows up on almost all patents, B01D17 on all of the last nine patents, 
C07C18 only on the first three, F01N19 on the last three but also on the sixth patent. The last 
three of the eight IPC codes that we find on this trajectory (C01B, C01F and C01G, all on 
chemistry of compounds) only appear on a single patent (the seventh one). With the 
exception of these last three IPC codes (and unlike the case with our first example), none of 
the IPC codes are exclusive to the brown or the green category. Another interesting matter 
to note regards the ninth patent of the trajectory. This patent has inventors originating from 
more than one country (Germany and the US) and has also been tagged by more than one 
green CPC code (both Y02A 10 and Y02A 50).  

Following these examples, let us elaborate on our methodological basis for the definition of 
the network that we use for technological landscaping. This draws on the co-occurrence 
concept, operationalized by fractional accounting. On our second exemplar trajectory, five of 
the 12 patents are characterized purely by the green CPC code Y02A 10, and there is also one 
patent which has two green codes, one of them being Y02A 10. Fractional counting implies 
that this trajectory consists of 5.5 patents featuring Y02A 10, which in terms of shares is 
5.5/12=45.83%. Similarly, the share of the contribution of the brown patents to the 
trajectory is 4/12=33.33%, that of the two Y02A 50 patents (one shared with Y02A 10) is 
1.5/12=12.5%, while that of Y02A 20 patent is 1/12=8.33%. Note that these percentages add 
up to 100 (except for rounding), which indicates that this set of Y02 tags (including the non-
Y02, or brown category) exhausts the trajectory. 

In terms of the respective contributions of countries, due to the co-presence of Germany (DE) 
and US in the ninth patent (i.e., a fractional contribution), the contribution of these two 
countries to the trajectory (also considering their exclusive appearance on the 10th and the 

 
16 Catalysis or colloid chemistry. 
17 Chemical separation. 
18 Acyclic or carbocyclic compounds. 
19 Gas-flow silencers or exhaust apparatus for internal-combustion engines. 
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1st patent) is 1.5/12=12.5%, while that of the United Kingdom (GB) is 4/12=33.33% and that 
of Japan is 5/12=41.67%. Again, these percentages add up to 100. 

 

Table 1. Co-occurrence of various types on example trajectory (on lower panel of Figure 3)  

 
 

Table 1 documents these occurrences and the implied co-occurrences for the second 
example trajectory. The complete picture of the contribution shares of green CPC categories 
(at 8-digit resolution)20 and countries are reproduced in the left column, labelled as 
occurrences. But our ultimate interest is clearly not in these occurrence shares, but in the 
extent to which all possible pairs of these occurrence categories co-occur on the trajectory, 
that is, the breakdown of the occurrences to co-occurrences. We label this as fractional co-
occurrence, which is equal to the multiplicative product of the respective occurrence shares 
of each pair. For instance, in the bottom part of Table 1, the total contribution of GB is 33.33% 
and that of Japan is 41.67%. Thus, 41.67% of Great Britain’s 33.33% contribution to the 
trajectory (41.67%x33.33%=20.83%) is attributable to its co-occurrence with Japan and 
similarly 33.33% of Japan’s 41.67% contribution to the trajectory (20.83%, once again) is 
attributable to its co-occurrence with the United Kingdom (GB). Clearly, these co-occurrence 
shares are symmetrical (the JP-GB co-occurrence value is equal to the GB-JP one). Hence, we 
collapse the above- and below-diagonal values into just once value and report it above the 
diagonal. Thus, the joint contribution of the GB-JP pair is calculated as 2x20.83%=41.66%. 
At the same time, the contribution of the co-occurrence of GB with itself amounts to 
33.33%x33.33%=11.11% and that of Japan with itself is 41.67%x41.67%=21.01%.  

To put this formally, on a given trajectory t that contains Nt patents, and given M categories 
of a selected taxonomy (such as inventor countries or IPC codes) the fractionally-counted co-
occurrence contribution of a pair of categories indexed as integers is  

 
20 In the PatStat convention for IPC and CPC codes, there are 8 characters (including white spaces) that appear 
before the ‘/’ in the full code.  

OCCURRENCES CO-OCCURRENCES
1 2 3 4

Y02P  20 Y02A  50 Brown Y02T  10
Y02P  20 8.33% Y02P  20 0.69% 2.08% 5.56% 7.64%
Y02A  50 12.50% Y02A  50 1.56% 8.33% 11.46%
Brown 33.33% Brown 11.11% 30.56%
Y02T  10 45.83% Y02T  10 21.01%

1 2 3 4
DE US GB JP

DE 12.50% DE 0.69% 2.08% 5.56% 7.64%
US 12.50% US 1.56% 8.33% 11.46%
GB 33.33% GB 11.11% 30.56%
JP 41.67% JP 21.01%
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𝑐𝑐𝑖𝑖𝑗𝑗𝑡𝑡 =
𝑜𝑜𝑖𝑖
𝑡𝑡𝑜𝑜𝑗𝑗

𝑡𝑡

𝑁𝑁𝑡𝑡2
           (1) 

where oi and oj are respectively the fractional number of patents where category i and 
category j can be found on the trajectory. As already noted, the matrix of c values is 
symmetric around the diagonal, (that is, for i≠j, cij = cji), thus we can as well express the co-
occurrence matrix in terms of a diagonal + upper diagonal form as 

𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 = �
2
𝑜𝑜𝑖𝑖
𝑡𝑡𝑜𝑜𝑗𝑗

𝑡𝑡

𝑁𝑁𝑡𝑡2
 𝑖𝑖𝑖𝑖 𝑖𝑖 < 𝑗𝑗

�𝑜𝑜𝑖𝑖
𝑡𝑡

𝑁𝑁𝑡𝑡
�
2

 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗
          (2)  

The upper diagonal form of the co-occurrence matrices for our second exemplar trajectory 
are shown on the right-hand side panels of Table 2 (respectively for countries and 8-digit 
CPC codes including brown). Remember that the vectors on the right-hand-side panels show 
the occurrence shares of the respective categories (i.e., oi/N for each ). Observe that the sum 
of the elements of each co-occurrence matrix is exactly 100%. That is, each matrix breaks the 
given ‘one’ trajectory down to  co-occurrences,  indicating the cooccurrence between pairs 
of different categories (i.e., off-diagonal values). 

Having broken each trajectory down to a co-occurrence matrix, the elements of which add 
up to unity (or 100%), the next step is to aggregate over a selected set of trajectories (or 
trajectory groups) ST into a large matrix whose rows and columns enumerate all the 
categories (i.e., countries, IPCs, etc.) that appear on the selected trajectories. In formal terms, 
the task is to construct the matrix according to either specification given by equations (1) or 
(2), i.e., either a symmetric form or a diagonal + upper diagonal form 

 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡∀𝑡𝑡∈𝑆𝑆𝑆𝑆          (3) 

In the remainder of the paper, we will aggregate over trajectory groups, rather than 
individual trajectories, although we will still write the shorter term “trajectories” instead of 
the longer “trajectory groups” when we refer to the co-occurrence results and their usage in 
the analysis below. There are 246,551 (green) trajectory groups in the database, and our 
analysis starts by doing the co-occurrence calculations as explained so far on each of these. 
In terms of aggregation of co-occurrence over the trajectory groups, let us use a complete 
example, where we use only 4-digit Y02 (green) CPC codes (plus the non-Y02 or class). The 
upper panel of Table 2 shows an actual matrix21 where ST is the set of all 246,551 green 
trajectory groups in our green NMP. The last column shows the row sums of the matrix, 
which is obviously the occurrence of the category.  

 

 
21 In the diagonal + upper diagonal form according to equation (2). 
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Table 2. Co-occurrences of 4_digit green CPC codes with each other and with brown.  

Top panel: raw frequencies, middle panel: normalized frequencies (i.e., association strength), 
bottom panel: frequencies normalized excluding diagonal elements. 

 Brown Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W Total Occur Total occur only with others 

Brown 124849 8125 6699 848 5465 13454 18050 18761 4159 162629 37780 

Y02A  2532 201 74 3 214 268 802 186 7468 4937 

Y02B   3127 2 79 985 180 126 19 7273 4146 

Y02C    389 0 109 196 100 15 1061 672 

Y02D     1880 20 20 16 0 4682 2802 

Y02E      9690 1888 833 279 18580 8891 

Y02P       6426 384 542 17190 10764 

Y02T        12104 23 22627 10522 

Y02W         2429 5041 2612 

            

            

 Brown Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W   
Brown 1.16 1.65 1.40 1.21 1.77 1.10 1.59 1.26 1.25   
Y02A  11.19 0.91 2.31 0.02 0.38 0.52 1.17 1.22   
Y02B   14.58 0.08 0.57 1.80 0.35 0.19 0.13   
Y02C    85.24 0.00 1.36 2.64 1.03 0.70   
Y02D     21.15 0.06 0.06 0.04 0.00   
Y02E      6.92 1.46 0.49 0.73   
Y02P       5.36 0.24 1.54   
Y02T        5.83 0.05   
Y02W         23.57   

            

            

 Brown Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W   
Brown  3.62 3.56 2.78 4.29 3.33 3.69 3.92 3.50   
Y02A   0.81 1.86 0.02 0.41 0.42 1.28 1.20   
Y02B    0.07 0.57 2.22 0.33 0.24 0.15   
Y02C     0.00 1.52 2.25 1.17 0.72   
Y02D      0.07 0.06 0.04 0.01   
Y02E       1.64 0.74 1.00   
Y02P        0.28 1.60   
Y02T         0.07   
Y02W            
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Note that, thanks to fractional counting within each trajectory group (which makes the co-
occurrence matrix of the trajectory group add up to one), the matrix elements add up to 
246,551, which is the number of trajectory groups considered. 22 

The aggregated co-occurrence matrix shows that the majority of potential co-occurrences 
have been actually realized, but to different extents. An intuitive assessment of the relative 
extents, even with such a small number of categories, is not straightforward, especially 
because the categories are quite heterogenous in their total occurrences (e.g., there are 
significantly more brown patents in our green trajectories than green). A normalization of 
the matrix (against heterogeneity in the ‘size’ of the categories) greatly helps.  

 We use a highly common method of normalization, referred to as the Association method 
(Van Eck and Waltman, 2009) that draws on graph theory. The method divides each actual 
co-occurrence by the ‘expected’ (given the total occurrences) co-occurrence. In terms of a 
diagonal + upper-diagonal representation: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 =

⎩
⎪
⎨

⎪
⎧ 2𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖

𝑆𝑆𝑆𝑆

𝐸𝐸�𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆�

, 𝑖𝑖𝑖𝑖 𝑖𝑖 < 𝑗𝑗

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆

𝐸𝐸�𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆�

, 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗
        (4) 

with 𝐸𝐸�𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆� = 𝑂𝑂𝑖𝑖𝑂𝑂𝑗𝑗
2𝑂𝑂

 ,         (5)  

where 𝑂𝑂𝑖𝑖 = ∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆∀𝑗𝑗 , 𝑂𝑂𝑗𝑗 = ∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆∀𝑖𝑖 , and 𝑂𝑂 = ∑ ∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆∀𝑗𝑗∀𝑖𝑖     (6) 

Equation (5) gives expected co-occurrence in a scenario where existing total occurrences 
were randomly redistributed among the co-occurrence categories, while keeping the total 
occurrence of each category as it is. Equation (4) divides actual co-occurrence by this 
expected value, so that high (low) values will indicate stronger (weaker) than expected co-
occurrence. 

The association-normalized matrix of the 4-digit level CPC co-occurrences (i.e., top panel of 
Table 2 as computed according to equations 4 to 6) is shown in the middle panel of the same 
table. Here we clearly observe strong homophily. That is, the association of a category with 
itself is extremely strong (stronger than expected). For example, the actual co-occurrence of 
Y02C with itself is about 85 times higher than its expected value in a random network. As an 
example of non-homophily, the co-occurrence of brown and Y02A patents is less strong, but 

 
22 A trajectory group is the union set of a number (say n) trajectories where each constituent trajectory (all of 
the same length L) is an ordered set of L patents. In our fractional accounting scheme, the weight of each patent 
of each contributing trajectory is 1/nL. This way, the contribution of each patent that is common to all n 
contributing trajectories to the trajectory group adds up to 1/L, while that of an uncommon one that shows up 
at the kth position is 1/mL, where m is the number of all patents that co-occupy the kth position along the 
trajectory group.   
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still higher than one (i.e., higher than expected). In fact, actual co-occurrences of all 
categories with brown are more than expected (i.e., association values larger than unity). 
The other outstanding co-occurrences are between the pairs Y02A-Y02C, Y02B-Y02E, Y02C-
Y02P, and Y02P-Y02W.  

In this paper, vis-à-vis Nomaler & Verspagen (2019), our interest shifts from homophily to 
heterophily. That is, we focus here on the interaction between different categories. This 
means that, as is common practice in graph theory (especially when visualizing and 
clustering of co-occurrence networks), we ignore the diagonal values of the co-occurrence 
matrix (i.e., the co-occurrence of a category with itself). This implies replacing equation (5) 
with  

𝑂𝑂𝑖𝑖 = ∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆∀𝑗𝑗≠𝑖𝑖 , 𝑂𝑂𝑗𝑗 = ∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆∀𝑖𝑖≠𝑗𝑗 , and23  𝑂𝑂 = ∑ ∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆∀𝑗𝑗≠𝑖𝑖∀𝑖𝑖     (5a)  

 In terms of our co-occurrence network in the top panel of Table1, this approach (which we 
adopt throughout the rest of the paper) yields the association matrix shown on the bottom 
panel of Table 2. In qualitative terms, what this matrix suggests is quite similar to that 
suggested by the matrix in the middle panel (where co-occurrence of a category with itself 
is also accounted for), but the matrix that ignores the diagonal elements indicates an even 
stronger association between the brown patents and all the patents of all green 
subcategories.  

The rest of this paper will draw on network graph representations of these co-occurrence 
matrices. Indeed, a co-occurrence matrix is a weighted network graph, where the nodes of 
the networks are the bibliometric categories (such as countries, IPC codes etc.) that are 
associated to individual patents and the weighted edges between pairs of nodes correspond 
to the co-occurrence of the pairs in trajectories. For visualization, we will use a combination 
of network graph layout and clustering methods. In particular, we use the so-called LinLog 
visualization method (Noack, 2007, 2009), combined with the modularity clustering 
technique proposed by Newman (2004). LinLog visualization and modularity clustering are 
closely related methods (see Noack 2009), i.e., they are based on the same principles and 
ideas. Modularity clustering provides a way of dividing the network nodes into communities 
(groups of nodes), based on the idea that co-occurrence linkages should be more frequent 
and stronger within the communities than between communities. In our maps, we will show 
these groups (clusters, or communities) by using colors. Because of the relatedness of the 
clustering and visualization methods, the nodes within a cluster will tend to appear close to 
each other in the map, i.e., the clusters will tend to appear as entities of their own. However, 

 
23 In our example on Table 2, the alternative vector of the occurrence figures Oi, that exclude the diagonal 
values of the co-occurrence matrix are indicated on the rightmost column of the top panel of the table.  
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because we reduce a highly-dimensional dataset to a 2-dimensional visualization and a 
limited number of clusters (typically 5-10), some of the clusters will overlap in the map. 

As a preview, we provide in Figure 4 the network graph of the co-occurrence network given 
in Table 2 before. Observe that the brown category, which is closely associated with the 
other, green, categories is placed (by the layout algorithm) at a central location and the 
distance between pairs of nodes closely reflect the extent to which they are mutually 
associated (as indicated by the bottom panel of Table 2). For example, node Y02D which is 
the least associated with the rest of the nodes (other than brown) appears furthest from the 
rest of the nodes. On the basis of mutual association, the algorithm assigns nodes Y02C, Y02P, 
Y02E and brown to a single cluster, while each of the rest are assigned to a singleton cluster 
of its own.  

 
Figure 4. Co-occurrence matrix in Table 2 visualized and clustered 

 

The next step is to define our networks in terms of what constitutes them, or, in other words, 
what the nodes are. The simplest choice would be to consider separately a network of 
countries (about 55 nodes), another network of green CPC codes (as in Figure 4, at 4-digit 
resolution), and another for IPC codes (at 4-digit resolution which comprises about 650 
different categories). As convenient as it is (i.e., relatively small number of nodes), this 
straightforward approach would devoid our analysis from an important source of 
information that can only be harvested by also considering the cross co-occurrence of the 
various types of categories on the patents.  
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Let us revisit our example trajectory shown in the upper panel of Figure 3. As discussed, the 
IPC code F16H shows up exclusively on brown patents, B60K appears both as green and 
brown, and the other IPC codes found on the trajectory (B60W, B60L, F02D, A01B, and 
B62D) appear exclusively on green patents. Similarly, only the brown patents of this 
trajectory have inventors from the Netherlands, Belgium or the UK, while inventors from 
Japan and Spain exclusively contribute to the green patents, and German inventors 
contribute both to a green and a brown patent. Such valuable information can only be 
captured by considering various crossings between the basic categories.  

 

Table 3. Example of occurrence and co-occurrence of composite characteristics on a trajectory 
(that appears on the upper panel of Figure 3) 

  
 

We opt to define this in two different ways, each of which is a combination of the (non-)green 
nature of a patent, and one other characteristic, which is either the IPC class, or the 
geographical location of the patent. Thus, we will define each patent in terms of two 2-
dimensional characteristic sets: (brown/green, 4-digit IPC class) and (brown/green, country 
of inventor). This yields characteristics such as B_B60K (B for brown and B60K as the IPC 
class), Y_B60W (Y for Y02, i.e., a green patent) and B60W as the IPC class, B_DE (DE for a 
German patent) or Y_US (for a US patent). We will draw separate networks for each of the 
two characteristic sets (based on either IPC classes or countries). Let us illustrate this 
further. Table 3 enumerates all the composite characteristics that are found on the trajectory 
depicted earlier on the upper panel of Figure 3. The crossing between 6 different 
participating countries and the green/brown divide implies 12 composite characteristics, 
however only seven of these are realized on the trajectory. Similarly, out of the 14 possible 

  

    

1 2 3 4 5 6 7
Br_BE Br_DE Br_GB Br_NL Gr_DE Gr_ES Gr_JP

Br_BE 8.33% Br_BE 0.69% 1.39% 1.39% 1.39% 1.39% 1.39% 8.33%
Br_DE 8.33% Br_DE 0.69% 1.39% 1.39% 1.39% 1.39% 8.33%
Br_GB 8.33% Br_GB 0.69% 1.39% 1.39% 1.39% 8.33%
Br_NL 8.33% Br_NL 0.69% 1.39% 1.39% 8.33%
Gr_DE 8.33% Gr_DE 0.69% 1.39% 8.33%
Gr_ES 8.33% Gr_ES 0.69% 8.33%
Gr_JP 50.00% Gr_JP 25.00%

1 2 3 4 5 6 7 8
Gr_A01B Gr_B62D Gr_F02D Br_B60K Gr_B60L Gr_B60K Gr_B60W Br_F16H

Gr_A01B 2.08% Gr_A01B 0.04% 0.09% 0.26% 0.35% 0.38% 0.98% 0.98% 1.04%
Gr_B62D 2.08% Gr_B62D 0.04% 0.26% 0.35% 0.38% 0.98% 0.98% 1.04%
Gr_F02D 6.25% Gr_F02D 0.39% 1.04% 1.13% 2.95% 2.95% 3.13%
Br_B60K 8.33% Br_B60K 0.69% 1.50% 3.94% 3.94% 4.17%
Gr_B60L 9.03% Gr_B60L 0.82% 4.26% 4.26% 4.51%
Gr_B60K 23.61% Gr_B60K 5.57% 11.15% 11.81%
Gr_B60W 23.61% Gr_B60W 5.57% 11.81%
Br_F16H 25.00% Br_F16H 6.25%
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crossings between the green/brown divide and the seven 4-digit IPC codes found on the 
trajectory, only eight combinations are realized. The computation of occurrence shares and 
the co-occurrence shares are based on the same principles of fractional counting.  

Last but not the least, let us explain our filtering strategy, which is a common practice in 
network visualization and clustering. We find that quite a few of the composite 
characteristics network nodes that we identify on our trajectories appear on only a few 
trajectories and therefore many of the co-occurrences are very small numbers. We consider 
these small numbers as noise and in order to avoid cluttering of the network graphs, we 
eliminate any node whose total co-occurrence with others amounts to less than 20 
trajectories and also any co-occurrence number that amounts to less than one full trajectory. 
Although these specific thresholds are arbitrary, their exact values do not influence the main 
results in our analysis, while applying no filtering does clutter our maps significantly. If none 
of the co-occurrences of a node with the other nodes satisfied the latter criteria (i.e., if the 
node becomes an isolate), that node was also eliminated from the network. In the resulting 
dataset, there are 709 elements in the (brown/green, 4-digit IPC class) set (423 of these are 
brown, the other 286 green), and 93 in the (brown/green, country of location) set (50 brown, 
43 green). 

 

4.2. Results: IPC classes 

We will start with the landscaping of the dataset with green/brown and IPC (4-digit) 
combinations. In Figure 5, we show the distribution of association values of the edges (links) 
in this network. The figure is based on the set of all trajectories with at least one green patent. 
In this figure, both axes are on a log scale, and therefore the approximate linearity (for most 
of the range) of the relationship suggests a power law distribution. This implies a high degree 
of skewness, with just a few edges that have very high association value, and many edges 
with small association. The vertical segment of the distribution on the right (i.e., for low 
values of association) is likely due to the thresholding (filtering) that we applied in building 
the network, which has led to the cutting of edges with small weight.  

Next, in Figure 6, we document some characteristics of the nodes in the network. Here we 
look both at total node weight (the variable O as specified in the previous sub-section), and 
at the diversification of nodes in terms of the distribution of their association with other 
nodes, i.e., the edge values in the network. The diversification variable is defined as the 
inverse of the Herfindahl index of the association values with other nodes. In other words, 
for every node j, we first calculate /Oj for all partner nodes , then calculate the sum of squares 
of these (this is the Herfindahl index), and finally take the inverse. Because there are 708 
potential partner nodes in the network, the maximum value for the inverse Herfindahl is 708. 
This value would correspond to an entirely equal distribution of association values over the 
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708 partner nodes. The smaller the inverse Herfindahl of a particular node is, the more 
unequal the distribution of association values is.  

 

 
Figure 5. Distribution of association values in the green/brown and IPC network, all green 
trajectories 

 

The horizontal axis of the figure displays the rank of the value O for the node, the vertical 
axis the diversification value (inverse Herfindahl). Green and brown nodes are indicated by 
different colors. The overall relationship is again one indication skewness, with the few 
largest nodes (in terms of the variable O) being most diversified. The maximum 
diversification value observed in the figure is about 99, which is significantly smaller than 
the theoretical maximum of 708. This implies that even the most diversified nodes have 
limited diversification. Diversification decays rapidly when nodes become smaller (in terms 
of the variable O). This relationship is pretty similar between green and brown nodes, 
although the fitted power law relations (dotted lines in the graph) show a slightly steeper 
slope for the set of green nodes.  

Thus, before having actually visualized the network, we already have the impression that 
this network is one in which a small set of nodes plays a very central role in keeping the 
network together. The nodes with large weights are also the ones with large connectivity, 
and without these nodes the network would quickly fall apart. Table 4 looks at which these 
nodes are, as it shows the top-15 nodes in terms of the node weights O. The table documents 
the top-15 nodes for a number of categories of trajectory lengths. This starts, on the left-hand 
side, with very short trajectories (2 – 4 patents), and goes up to 15 – 28 patents length. The 
rightmost column with codes documents the ranking for trajectories of any length. The short 
description in the last column refers to the IPC code only, and only to the ‘all lengths’ column, 
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and is an informal summary (by the authors) of the full title of the class. Note that one of 
these descriptions (for B01J) occurs twice, because that code appears in the table both as 
brown and green. 

 

 
Figure 6. Diversification of association values of individual nodes in the network, 
green/brown and IPC 

 

One interesting aspect of the rankings in the table is that for all trajectory lengths longer than 
4 patents, as well as for the set of all trajectories, the brown labels dominate the top of the 
lists. For these cases, the first green (Y) label appears at rank 9 (Y_B01J for length 15-28). 
For all lengths, only two green (Y) labels appear in the top-15. Thus, except for very small 
trajectory lengths, brown technology plays a dominant role in the networks that we will use 
for the landscaping exercise.  

Another interesting feature of the rankings is that many of the labels appear often across the 
columns for different trajectory length. There is a total of 29 labels in the five columns (which 
together have 75 positions. The top label (B_A61K) is common to all five columns, and there 
are five more labels that appear in all columns (B_B01J, B_C07C, B_C07D, B_H01M, Y_B01J), 
while there are 13 labels that appear in only one column.  
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Table 4. Node labels of the top-15 nodes in terms of total node weight, for various trajectory 
length, brown/green and IPC codes 

Rank Len 2-4 Len 5-8 Len 9-14 Len 15-28 All Len Short description of the IPC code (All length) 

1 B_A61K B_A61K B_A61K B_A61K B_A61K Medical preparations 

2 B_C07C B_B01J B_C07D B_C12N B_C07D Heterocyclic compounds 

3 Y_H01M B_C07C B_H01L B_C07D B_B01J Chemical or physical processes 

4 B_B01D B_B01D B_H04W B_C07K B_C07C Acyclic or carbocyclic compounds 

5 Y_H01L B_H01L B_H01M B_A61P B_H01L Semiconductor devices 

6 B_B01J B_G06F B_C12N B_H01M B_H01M Conversion of chemical to electrical energy 

7 Y_B01D B_C07D B_C07K B_C12P B_C12N Microorganisms or enzymes 

8 Y_C07C B_H04L B_B01J B_C07C B_B01D Separation 

9 B_H01M B_H01M B_C08L Y_B01J B_A61P Therapeutic activity of chemicals 

10 Y_B01J B_F01D B_H04L B_B01J B_C07K Peptides 

11 Y_A61K Y_B01J B_A61P Y_F01N Y_H01M Conversion of chemical to electrical energy 

12 B_G06F Y_B01D B_H04B B_C12Q B_G06F Digital data processing 

13 Y_H02J Y_H01M B_C07C B_A61Q Y_B01J Chemical or physical processes 

14 B_H01L Y_F02D Y_B01J Y_H01M B_H04L Transmission of digital information 

15 B_C07D B_A61P B_G06F B_C12R B_H04W Wireless communication networks 

 

The landscaping map that we produced is in Figure 7.24 The size of the nodes is proportional 
to node weight O. The colors of the nodes in this map represent the clusters that are found 
using the modularity method. There are six clusters in the graph, ranging in size from 178 
nodes (the red cluster in the center) to 77 nodes (the cyan cluster on the right-top). Exact 
cluster configurations for all landscape maps are documented in the appendix. Each of these 
clusters is built around a number of the top-nodes in Table 4. For example, the large red 
cluster includes nodes B_H01L (semiconductor devices), B_H01M and Y_H01M (both 
conversion of chemical to electrical energy), while the top-node B_A61K is found in the 
smaller cyan cluster. 

The areas of the map contain clearly identifiable green sub-technologies. In the center of the 
map, in the red cluster, and roughly spanning the are closely surrounding the two large nodes 
B_H01L (semiconductor devices) and B_H01M (conversion of chemical to electrical energy), 
we find battery technology. This area includes both the brown and green versions of H01M 
and H01L.  

 
24 We use VOS viewer to produce all landscaping maps in this paper, always in LinLog/Modularity mode. The 
map in this figure is produced with attraction = 4, repulsion = 2 and resolution = 0.7. 
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Figure 7. Landscaping map for trajectories of all length, green/brown and IPC codes 

 

On the top left, the green cluster spans ICT and electrical technologies, with three large sub-
areas: wireless communication (at the top right extreme of the cluster, with IPC codes H04W, 
wireless communication, and H04L, transmission of digital information, both in green and 
brown versions), computing (the core is IPC code G06F both in green and brown versions), 
and electrical power distribution in the lower part of the green cluster (with codes H02J, 
distributing power; H02M, power conversion, and G05B, control systems, all in green and 
brown versions).  

The green cluster with its large emphasis on electronics and electricity fits in with the other 
(lower) parts on the left-hand side of the graph, as most of these have a clear link to electric 
power. The top area in the light blue cluster with codes Y_B60L (electric vehicles) and 
Y_H02P (electric motors) is led by green nodes (code Y), and clearly corresponds to electric 
mobility. The area below that, with large nodes Y_B60W (hybrid vehicles), B_H02K 
(dynamos) and B_F16H (gearing) can either be seen as a closely related sub-part, or part of 
the larger electric mobility group. In between the electric mobility area and the battery area 
that we pointed to above, we find a wind power area, with the central blue node Y_F03D 
(wind motors).  
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The area with green and blue nodes in the center-bottom part of the graph is focused on 
(combustion) engines and turbines. The central nodes here are B_F01D (steam turbines), 
Y_F02D (control of combustion engines) and Y_F02M (fuel supply of combustion engines). 
The right-hand side of the graph contains two large groups. One of these is the purple cluster, 
which is built around the reduction, capture and control of emissions. Central nodes in this 
cluster are B_B01J (chemical and physical processes), B_B01D and Y_B01D (separation), 
B_F01N and Y_F01N (exhaust apparatus), and B_C07C and Y_C07C (acyclic or carbocyclic 
compounds). 

Finally, the cyan cluster on the top right-hand side is a medical and health cluster. The central 
nodes here are B_A61K (medical preparations) and B_A61P (therapeutic activity of 
chemicals), as well as B_C12N (microorganisms or enzymes), B_A01N (biocides). 
Interestingly, in this cluster, a far majority of the large nodes are brown.  

We also produced similar landscaping maps for the individual categories of trajectory 
lengths. Most of these (all categories shorter than 15 patents) are provided in the appendix. 
These maps show a large degree of similarity to the above map for all trajectory lengths. In 
other words, the general configuration between greentech sub-fields that we observe above, 
is generally also appropriate for specific trajectory lengths. We do document, however, the 
map for trajectory lengths 15 – 28 patents, in Figure 8.25 This map has 73 nodes and four 
clusters, which vary in size from 31 nodes (the central red cluster, which corresponds to the 
largest cluster in the previous map) to 10 nodes (the yellow cluster). 

This map also shows similarities to the previous map. In particular, some of the previous 
areas are still recognizable, e.g., the ICT cluster (wireless communication and computing), 
which is now yellow/green and found in the upper-right hand side corner; the health 
medicine cluster, which is now green and found in the upper-right hand side corner; the 
cluster on reduction, capture and control of emissions, which is now light blue and found at 
the bottom of the graph, and batteries (to the right of the center in the red cluster). However, 
a number of other prominent green technologies are no longer found in this graph, e.g., the 
electric mobility cluster(s) and wind power. The IPC codes (green or brown) corresponding 
to the core of these fields are no longer in the network. This means that these technologies 
are not represented in the longest and most cumulative trajectories of the database. 

 

 
25 This map was produced with settings attraction = 4, repulsion = 2, resolution = 0.7. 
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Figure 8. Landscaping map for trajectories of length 15-28, green/brown and IPC codes 

 

4.3. Results: countries 

We now move to describe the results of the landscaping exercise in the dataset with 
green/brown and country codes. Like before, we first look at some general properties of the 
distribution of node weight and edge weight in this network. Figure 9 describes the 
distribution of edge weight. As in the previous case, this is a skewed distribution that 
resembles a power law, except at the right end, where we find the small edge values (again, 
this is likely the result of applying a cutoff value for co-occurrences. 

Figure 10 describes the relationship between node weight and diversification. Again, this is 
similar to the previous case, with the large nodes being the most diversified ones, and a 
power law being a reasonably good fit. Diversification peaks at around 87, which is much 
closer to the theoretical maximum (92) than before. Thus, nodes in the country network can 
be much more diversified (relatively speaking) than nodes in the IPC codes network. Like 
before, the distribution for green nodes resembles that for brown nodes. 
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Figure 9. Distribution of association values in the green/brown and country network, all green 
trajectories 

 

 

 
Figure 10. Diversification of association values of individual nodes in the network, 
green/brown and countries 

 



32 
 

Table 5 shows the top-15 nodes in terms of node weight O, again for various network lengths. 
Brown/US tops the table in each of the columns, with brown/Japan in second place for the 
longer trajectories, as well as the all-lengths network, and brown/Germany in second place 
for shorter trajectory lengths. Thus, we also see brown nodes dominating the top of the node 
weight distributions, as was the case before. However, in this case, the first green nodes start 
appearing from rank 3 and 4. In positions 1 – 5, no other countries than the US, Germany and 
Japan appear, with the UK (listed as GB) as the first other country appearing. The code B_?? 
indicates an unknown country. There are a total of 20 labels occupying the 75 positions in 
the table, with 11 labels occurring the maximum of five times. Three of those 11 labels are 
green (Y_US, Y_DE and Y_JP), the other eight are brown (B_US, B_DE, B_JP, B_FR, B_CH, B_GB, 
B_IT and B_NL). 

 

Table 5. Node labels of the top-15 nodes in terms of total node weight, for various trajectory 
lengths, brown/green and countries 

Rank Len 2-4 Len 5-8 Len 9-14 Len 15-28 All lengths 

1 B_US B_US B_US B_US B_US 

2 B_DE B_DE B_JP B_JP B_JP 

3 Y_US B_JP B_DE B_DE B_DE 

4 Y_DE Y_US Y_US B_FR Y_US 

5 B_JP Y_DE Y_JP Y_JP Y_DE 

6 Y_JP Y_JP B_GB B_GB Y_JP 

7 B_FR B_FR B_FR Y_US B_FR 

8 Y_FR B_GB Y_DE B_BE B_GB 

9 B_GB Y_FR B_CH Y_DE Y_FR 

10 Y_GB B_IT B_NL B_CH B_CH 

11 B_IT B_CH B_IT B_CA B_IT 

12 B_NL B_NL B_KR B_NL B_NL 

13 B_CH Y_GB Y_FR B_KR Y_GB 

14 Y_IT B_KR B_BE B_?? B_KR 

15 Y_NL B_SE Y_GB B_IT B_SE 
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The landscaping map for green/brown and countries is in Figure 11.26 There are three 
clusters of nodes, which are clearly organized geographically. The largest cluster is the red 
one (44 nodes), which consists of relatively advanced European countries. Germany, France, 
Italy, the UK and the Netherlands comprise the largest nodes in this cluster. This cluster, like 
the other two, has a fairly even representation of brown and green nodes, although we notice 
that most often the two versions of an individual country are in the same cluster.  

The second largest cluster has 35 nodes and is the green cluster. This cluster is dominated 
by non-European countries, although there are some European nodes in it as well. The US 
and Japan supply the largest nodes to this cluster, with B_GB also being a large node. Note 
that while B_GB is in the green cluster, Y_GB (the green version) is in the first cluster, thus 
making the UK one of the relatively few countries that are split over two clusters. Asian 
countries also make up a large part of the second, green cluster. 

The third and final cluster is colored blue, and it has only 14 nodes. The largest node in this 
cluster is B_SE, which just makes it to the list in the last column of Table 5. Thus, this is a 
cluster with relatively small and peripheral nodes, which is also indicated by the position of 
the cluster in the graph.  

 
Figure 11. Landscaping map for trajectories of all lengths, green/brown and countries 

 
26 The settings fort his graph are attraction 3, repulsion 1, resolution 1. 
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Like before, we document the landscaping maps for trajectory lengths 2 – 14 in the appendix, 
and move to the map for the longest trajectories (15 – 28) in Figure 12. This map has two 
clusters, of 17 and 12 nodes (i.e., 29 nodes in total). The small cluster from the previous graph 
has disappeared from the graph, these nodes do not appear in the long trajectories often 
enough to be included. Interestingly, the clustering of this network has switched from 
geographical to the green/brown distinction. The largest cluster (red) has 16 brown nodes 
and one green node (Y_IT), the other cluster (green) has nine green nodes and three brown 
nodes. Thus, in the longest and most cumulative trajectories, the green/brown distinction is 
a more useful way of organizing the technology landscape than geography. This switch from 
geography to green/brown already happens in the network for length 9-15, as can be seen 
in the appendix.  

 

 

 
Figure 12. Landscaping map for trajectories of length 15-28, green/brown and countries 
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5. Summary and conclusions 

In a previous paper (Nomaler and Verspagen, 2019), we introduced a method that uses a 
(very) large patent citation network to extract a collection of technological trajectories 
(which are represented by chains of citations) that are aimed at describing the global main 
technological trends over the last decades. Using this method, we extract a so-called network 
of main paths (NMP), which consists of overlapping paths that represent the trajectories that 
represent large technology flows, from the entire set of EPO patents. We characterized each 
patent on the NMP as either green (contributing to the mitigation of greenhouse gas 
emissions) or brown (non-green), and then selected the set of trajectories that contain at 
least one green patent.  

In this paper, we use the set of green trajectories to perform a patent landscaping exercise 
that aims to map the main developments in the greentech field. To this end, we build a 
network from the database of green technological trajectories. The network is based on co-
occurrence on the green trajectories. The nodes in our network are either combinations of 
green/brown and 4-digit IPC code, or combinations of green/brown and country of origin of 
the patent. In the first case, a node could, for example, be brown patents in class F16H, or 
green patents in class F01D. In the second case, we could have nodes like green patents from 
Germany, or brown patents from Japan. The networks are visualized using the LinLog 
method. In both cases (IPC classes or countries), we obtain sensible maps of the green 
technological landscape, which outline the relatedness between green technology sub-parts.  

We argue that our landscaping method based on relations between technological fields that 
are extracted from technological trajectories fits the aim of outlining main technological 
trends better than methods that are based on individual patents or patent citation pairs. The 
reason is that the technological trajectories in our method are aimed at summarizing 
technological trends, and hence they are the most logical building blocks for mapping these 
trends. We look at the maps that we build as a proof-of-concept, and suggest that future 
patent landscaping work considers using trajectory-based metrics (our data are publicly 
available to support such work, see footnote 5). 

A common feature between the network based on IPC codes and the one based on countries 
is that brown nodes play a very important role in the network. In both cases, the nodes that 
have the highest weight, are brown nodes. This is in line with conclusions from our earlier 
analysis (Nomaler and Verspagen, 2019), and implies that progress in greentech cannot be 
understood independently of developments in non-greentech technologies. We also find that 
both in the country and IPC network, the distribution of node and vertex weight is very 
skewed, with a few nodes or edges being responsible for the main part of co-occurrence. The 
large nodes are also the ones that are broadly connected, i.e., they keep the network together 
and link different sub-areas of the landscape maps. 
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In the network that uses IPC codes, we observe a number of very broad fields that transcend 
greentech as such, as well as technological areas that are clearly key to greentech. The main 
examples of the first type of fields (general) are ICT and electrical, and health and medical. 
These re broad technological areas that serve goals that are not necessarily related to 
greentech, but they show up as major parts of the greentech field in our maps.  

The IPC-based map is broadly divided in one half that contains electricity-based 
technologies, and another half that has no direct relations to electricity. The electricity-based 
part includes the large ICT and electrical cluster, but also batteries electric motors and 
electric or hybrid mobility technologies, as well as power generation and distribution 
technology. In the non-electrical part of the map, the health/medical cluster is a large one, 
but we also find a large cluster with technologies aimed at reducing, controlling and 
capturing emissions and exhaust. 

In the geography (country) based map, we find that location is the main dividing line. This 
map contains three large areas. One of these contains mostly countries outside Europe, with 
the US and Japan as the largest nodes. The other clusters are Europe-centered. All of these 
clusters contain a significant number of brown nodes. 

We also produced separate maps for trajectories of different lengths, and we observe a large 
similarity between those and the maps for all trajectories. Differences are largest for the 
maps based on the longest trajectories. In the geography-based map with longest 
trajectories, the divide changes from geography-based to brown/green-based. In other 
words, the major divide in the geography network of longest trajectories is between green 
and non-green technologies, instead of Europe-non-Europe. In the IPC-based map with 
longest trajectories, the two general clusters (ICT and health/medical) remain clearly visible, 
but a number of typical green technologies, such as electric cars and wind power, vanish 
from the network. These technologies have not yet accumulated the long trajectories that 
are found in this network. 

As our analysis is mostly a proof-of-concept of the idea that trajectories are a useful unit of 
analysis for patent landscaping, the policy relevance of our work has a major indirect 
component: to the extent that patent landscaping is used to inform policymakers (e.g., 
innovation policy, policy on intellectual property rights), the application of our method in 
such studies will be one of the ways in which our method could become policy relevant. 
However, there are also policy implications of the findings of our own patent landscaping 
exercise in green technology. First, as in our previous study, we found that non-green 
(brown) technology plays an important role in the green technology landscape. Policies 
aimed at making a green technology transition possible should therefore aim at greening 
non-green technologies as well as creating new and original green technology paths. Second, 
our landscaping maps show that large and broad technological areas such as ICT and 
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health/medical are important sub-parts of the green technology field. Thus, a greentech 
technology policy should have a broad focus, rather than only focusing on very specific 
greentech areas such as electric vehicles. Finally, the geography-based maps that we 
produced show that greentech technology trajectories do not develop in geographical 
isolation, but rather as a collective international effort. Greentech policy should therefore 
transcend international borders, and be based on international R&D cooperation. 

 

 

References 

Aharonson, B.S., Schilling, M.A., 2016. Mapping the technological landscape: Measuring 
technology distance, technological footprints, and technology evolution, Research Policy, vol. 
45, pp. 81–96. 

Batagelj, V. (2003), Efficient Algorithms for Citation Network Analysis, mimeo, reprinted in: 
V. Batagelj, P. Doreian, A. Ferligoj, N. Kejzar: Understanding Large Temporal Networks and 
Spatial Networks. Wiley, 2014 

Billinger, S. Stieglitz, N. and T.R. Schumacher, 2014, Search on Rugged Landscapes: An 
Experimental Study, Organization Science 25(1): 93-108. 

Bubela, T., Gold, E., Graff, G. et al. (2013), Patent landscaping for life sciences innovation: 
toward consistent and transparent practices. Nature Biotechnology, vol. 31, 202–206 

Dosi, G. (1982) Technological paradigms and technological trajectories. Research Policy, 11: 
147–162. 

Federico, P., Heimerl, F., Koch, S. and S. Miksch (2017). A Survey on Visual Approaches for 
Analyzing Scientific Literature and Patents, IEEE Transactions on Visualization and 
Computer Graphics, vol. 23, pp. 2179-2198 

Fleming, L., Sorenson, O., 2004. Science as a map in technological search. Strategic 
Management Journal, vol. 25, pp. 909–928. 

Hummon, N.P., Doreian, P. (1989) Connectivity in a citation network: The development of 
DNA theory. Social Networks, 11: 39-63. 

Kauffman, S.A. 1993. The origins of order: self-organization selection in evolution. Oxford 
University Press, Oxford, U.K. 

Kauffman, S.A., Lobo, J., Macready, W.G., 2000. Optimal search on a technology landscape. 
Journal Economic Behavior and Organization, vol. 43, pp. 141–166. 



38 
 

Kay, L., Newman, N., Youtie, J., Porter, A.L. and Rafols, I. (2014), Patent Overlay Mapping: 
Visualizing Technological Distance. Journal of the Association for Information Science and 
Technology, vol. 65: 2432-2443. 

Levinthal, D.A., 1997. Adaptation on Rugged Landscapes, Management Science, vol. 43, pp. 
934-950. 

Leydesdorff, L., Kogler, D.F. and B. Yan (2017). Mapping Patent Classifications: Portfolio and 
Statistical Analysis, and the Comparison of Strengths and Weaknesses, Scientometrics, vol. 
112: 1573-1591 

Liu, J. S., Lu, L. Y. Y. (2012) An Integrated Approach for Main Path Analysis: Development of 
the Hirsch Index as an Example. Journal of the American Society for Information Science and 
Technology, 63:528-542. 

Mina, A., Ramlogan, R., Tampubolon, G., Metcalfe, J.S. (2007) Mapping evolutionary 
trajectories: Applications to the growth and transformation of medical knowledge. Research 
Policy, 36: 789-806. 

Newman, M.E.J. (2004). Fast algorithm for detecting community structure in networks. 
Physical Review E, 69, 066133. 

Noack, A. (2007). Energy models for graph clustering. Journal of Graph Algorithms and 
Applications, 11(2), 453–480.  

Noack, A. (2009). Modularity clustering is force-directed layout. Physical Review E, 79, 
026102 

Nomaler, Ö. & B. Verspagen, 2016, River deep, mountain high: of long run knowledge 
trajectories within and between innovation clusters, Journal of Economic Geography, 16, pp. 
1259-1278 

Nomaler, Ö. & B. Verspagen, 2019, greentech homophily and path dependence in a large 
patent citation network, UNU-MERIT working paper #2019-051 

Nuvolari, A. Verspagen, B. (2009) Technical choice, innovation, and British steam 
engineering, 1800–50. Economic History Review, 62: 685-710. 

Sahal, D. (1981) Patterns of Technological Innovation (Addison-Wesley). 

Stuart, T.E., Podolny, J.M., 1996. Local search and the evolution of technological capabilities. 
Strategic Management Journal, vol. 17, pp. 21–38. 

Trajtenberg, M. and A. Jaffe, 2002, Patents, Citations, and Innovations. A Window on the 
Knowledge Economy, Cambridge, MA: MIT Press 



39 
 

Van Eck, N.J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of 
some well-known similarity measures. Journal of the American Society for Information 
Science and Technology, 60(8), 1635–1651. 

Verspagen, B. (2007) Mapping Technological Trajectories as Patent Citation Networks: a 
Study on the History of Fuel Cell Research, Advances in Complex Systems, vol. 10: 93-115. 

Yan, B. and Luo, J. (2017), Measuring technological distance for patent mapping. Journal of 
the Association for Information Science and Technology, 68: 423-437.



Appendix. Additional landscaping maps 

All maps use the same parameters as the corresponding map for all trajectory lengths in the main text. 

 
Figure A1. Landscaping map for trajectories of length 2-4, green/brown and IPC codes 

 
Figure A2. Landscaping map for trajectories of length 5-8, green/brown and IPC codes 
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Figure A3. Landscaping map for trajectories of length 9-14, green/brown and IPC codes 

 

 
Figure A4. Landscaping map for trajectories of length 2-4, green/brown and countries 
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Figure A5. Landscaping map for trajectories of length 5-8, green/brown and countries 

 
Figure A6. Landscaping map for trajectories of length 9-14, green/brown and countries



Table A1. Cluster membership of brown/green & IPC combinations, by trajectory length 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
B_A01G 1 1 1 - - B_C03C 1 1 1 1 - 
B_A41D 1 - - - - B_C04B 1 1 1 5 3 
B_A43B 1 - 1 - - B_C08C 1 - 1 - - 
B_A44B 1 - - - - B_C08F 1 1 1 1 1 
B_A47G 1 - - - - B_C08G 1 1 1 1 1 
B_A62C 1 4 1 - - B_C08J 1 1 1 1 1 
B_B05B 1 1 1 1 - B_C08K 1 1 1 1 1 
B_B05C 1 1 1 - - B_C08L 1 1 1 1 1 
B_B05D 1 1 1 1 - B_C09B 1 1 5 1 - 
B_B24D 1 - - - - B_C09C 1 1 1 1 - 
B_B26D 1 1 2 - - B_C09D 1 1 1 1 1 
B_B26F 1 - - - - B_C09J 1 1 1 1 1 
B_B27N 1 - 1 - - B_C09K 1 1 1 1 1 
B_B28B 1 1 1 - - B_C23C 1 1 1 1 1 
B_B28C 1 - - - - B_C23F 1 1 1 - - 
B_B29B 1 1 1 1 - B_C23G 1 - - - - 
B_B29C 1 1 1 1 - B_C25B 1 3 4 1 - 
B_B29D 1 1 1 1 - B_C25D 1 1 1 1 - 
B_B29K 1 1 1 1 - B_C30B 1 1 1 1 - 
B_B29L 1 - 1 1 - B_D01D 1 - - - - 
B_B31B 1 - - - - B_D01F 1 1 1 1 - 
B_B32B 1 1 1 1 1 B_D01G 1 - - - - 
B_B33Y 1 - - - - B_D01H 1 - 2 - - 
B_B41C 1 - - - - B_D02G 1 - - - - 
B_B41M 1 1 1 1 - B_D03D 1 - 1 - - 
B_B41N 1 - - - - B_D04B 1 - 1 - - 
B_B44C 1 - - - - B_D04H 1 1 1 1 - 
B_B60C 1 1 1 1 - B_D06M 1 1 1 4 - 
B_B60J 1 2 1 1 - B_D06N 1 - - - - 
B_B64G 1 4 - - - B_D06P 1 - - - - 
B_B65B 1 1 1 1 - B_D21H 1 1 1 1 - 
B_B65D 1 1 1 1 - B_E01C 1 1 1 - - 
B_B65G 1 1 2 1 - B_E01F 1 1 1 - - 
B_B65H 1 1 2 1 - B_E04B 1 1 1 1 - 
B_B81B 1 - - - - B_E04C 1 1 1 - - 
B_B81C 1 - - - - B_E04D 1 1 1 - - 
B_B82Y 1 - - - - B_E04F 1 1 1 - - 
B_C01G 1 3 4 1 1 B_E04G 1 1 1 - - 
B_C03B 1 1 1 1 - B_E06B 1 1 1 1 - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
B_E21B 1 1 1 - - Y_B29D 1 - 1 - - 
B_E21D 1 - - - - Y_B29K 1 1 - - - 
B_F16B 1 1 1 - - Y_B29L 1 - - - - 
B_F16L 1 1 1 1 - Y_B32B 1 1 1 1 - 
B_F21K 1 - - - - Y_B60C 1 1 1 1 - 
B_F21S 1 1 1 1 - Y_B60J 1 - - - - 
B_F21V 1 1 1 1 - Y_B65B 1 - - - - 
B_F21Y 1 1 1 - - Y_B65D 1 1 1 1 - 
B_G01J 1 1 1 - - Y_B65G 1 1 - - - 
B_G01Q 1 - - - - Y_C03B 1 1 1 1 - 
B_G02B 1 1 1 1 - Y_C03C 1 1 1 1 - 
B_G02F 1 1 1 1 1 Y_C04B 1 1 1 5 - 
B_G03C 1 - 1 1 1 Y_C08C 1 - - - - 
B_G03F 1 1 1 1 1 Y_C08F 1 1 1 1 - 
B_G03G 1 1 1 1 1 Y_C08G 1 1 1 1 - 
B_G03H 1 - - - - Y_C08J 1 1 1 1 - 
B_G04B 1 - - - - Y_C08K 1 1 1 1 - 
B_G09F 1 1 1 1 - Y_C08L 1 1 1 1 - 
B_G21K 1 - - - - Y_C09B 1 - - - - 
B_H01B 1 1 1 1 1 Y_C09C 1 - - - - 
B_H01C 1 1 2 - - Y_C09D 1 1 1 1 - 
B_H01G 1 3 4 1 - Y_C09J 1 1 1 - - 
B_H01J 1 1 1 1 - Y_C09K 1 1 1 1 - 
B_H01K 1 - 1 - - Y_C23C 1 1 1 1 1 
B_H01L 1 1 1 1 1 Y_C25B 1 3 4 1 - 
B_H01M 1 3 4 1 1 Y_C25D 1 1 - - - 
B_H01R 1 1 1 1 - Y_C30B 1 1 1 - - 
B_H01S 1 1 1 1 - Y_D01F 1 - - - - 
B_H02G 1 1 1 - - Y_D04H 1 - - - - 
B_H02N 1 - - - - Y_D21H 1 1 1 - - 
B_H02S 1 1 - - - Y_E01C 1 1 1 - - 
B_H05H 1 1 1 - - Y_E04B 1 1 1 - - 
B_H05K 1 1 1 1 - Y_E04C 1 1 1 - - 
Y_A01G 1 1 1 1 - Y_E04D 1 1 1 1 - 
Y_B05B 1 1 - - - Y_E04F 1 1 - - - 
Y_B05D 1 - - - - Y_E06B 1 1 1 - - 
Y_B28B 1 1 1 - - Y_E21B 1 1 - - - 
Y_B29B 1 1 1 - - Y_F16B 1 1 1 - - 
Y_B29C 1 1 1 1 - Y_F16L 1 1 1 - - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
Y_F21S 1 1 - - - B_B61L 2 2 2 - - 
Y_F21V 1 1 - - - B_B65C 2 - - - - 
Y_F21Y 1 - - - - B_C06B 2 - - - - 
Y_F24J 1 1 1 1 - B_E05B 2 4 2 2 - 
Y_F24S 1 1 1 - - B_E05C 2 - - - - 
Y_G01J 1 - - - - B_E05D 2 - - - - 
Y_G02B 1 1 1 1 - B_E05F 2 - 3 - - 
Y_G02F 1 - - - - B_F24C 2 2 2 1 - 
Y_G03F 1 - - - - B_G01B 2 6 2 2 - 
Y_G09F 1 - - - - B_G01C 2 6 2 2 - 
Y_G21B 1 3 - - - B_G01D 2 6 3 2 - 
Y_H01B 1 1 1 1 - B_G01G 2 - 2 3 - 
Y_H01G 1 3 4 1 1 B_G01K 2 4 7 - - 
Y_H01J 1 1 1 1 - B_G01R 2 2 2 2 - 
Y_H01K 1 - - - - B_G01S 2 6 2 2 - 
Y_H01L 1 1 1 1 1 B_G01V 2 6 1 - - 
Y_H01M 1 3 4 1 1 B_G01W 2 - - - - 
Y_H01R 1 1 1 - - B_G02C 2 - 1 7 - 
Y_H02G 1 1 3 - - B_G03B 2 1 2 - - 
Y_H02S 1 1 1 - - B_G04C 2 - - - - 
Y_H05H 1 - - - - B_G04G 2 - 2 - - 
Y_H05K 1 1 1 1 - B_G05B 2 6 2 2 - 
B_A01M 2 5 5 - - B_G05F 2 2 2 - - 
B_A21B 2 - - - - B_G06F 2 6 2 2 4 
B_A47J 2 2 2 1 - B_G06K 2 6 2 2 - 
B_A63F 2 - - 2 - B_G06N 2 - - - - 
B_B23B 2 6 2 - - B_G06Q 2 6 2 2 - 
B_B23C 2 - - - - B_G06T 2 6 2 2 - 
B_B23D 2 - - - - B_G07B 2 - 2 2 - 
B_B23Q 2 6 2 2 - B_G07C 2 6 2 2 - 
B_B24B 2 6 2 7 - B_G07D 2 - - 2 - 
B_B25F 2 - 3 - - B_G07F 2 6 2 2 - 
B_B25J 2 6 2 3 - B_G08B 2 6 2 2 - 
B_B28D 2 1 - - - B_G08C 2 6 2 2 - 
B_B41F 2 1 2 2 - B_G08G 2 6 2 2 - 
B_B41J 2 1 2 2 2 B_G09B 2 - 2 - - 
B_B42D 2 - 2 2 - B_G09G 2 6 2 1 - 
B_B60Q 2 2 2 1 - B_G10L 2 - 2 2 - 
B_B60R 2 2 2 2 - B_G11B 2 6 2 2 4 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
B_G11C 2 6 2 2 - Y_G01K 2 - - - - 
B_H01F 2 2 3 6 - Y_G01R 2 2 2 2 - 
B_H01H 2 2 2 2 - Y_G01S 2 6 2 2 - 
B_H01P 2 6 2 - - Y_G01V 2 - - - - 
B_H01Q 2 6 2 2 - Y_G05B 2 6 2 2 - 
B_H02B 2 2 - - - Y_G05F 2 2 2 - - 
B_H02H 2 2 2 2 - Y_G06F 2 6 2 2 - 
B_H02J 2 2 2 2 - Y_G06K 2 - 2 2 - 
B_H02M 2 2 2 1 - Y_G06Q 2 6 2 2 - 
B_H03B 2 - - - - Y_G06T 2 - 2 - - 
B_H03F 2 2 2 - - Y_G07C 2 - - - - 
B_H03G 2 - 2 2 - Y_G07F 2 - - - - 
B_H03H 2 2 2 - - Y_G08B 2 6 - - - 
B_H03J 2 - 2 2 - Y_G08C 2 - - - - 
B_H03K 2 2 2 2 - Y_G08G 2 - - - - 
B_H03L 2 - 2 - - Y_G09G 2 6 2 - - 
B_H03M 2 6 2 2 - Y_G11B 2 - - - - 
B_H04B 2 6 2 2 4 Y_G11C 2 - - - - 
B_H04H 2 - 2 2 - Y_H01F 2 2 3 - - 
B_H04J 2 6 2 2 - Y_H01H 2 2 2 - - 
B_H04L 2 6 2 2 4 Y_H01Q 2 - - - - 
B_H04M 2 6 2 2 4 Y_H02H 2 2 2 - - 
B_H04N 2 6 2 2 4 Y_H02J 2 2 2 2 - 
B_H04Q 2 6 2 2 - Y_H02M 2 2 2 1 - 
B_H04R 2 6 2 2 - Y_H03K 2 2 - - - 
B_H04W 2 6 2 2 4 Y_H04B 2 6 2 2 4 
B_H05B 2 2 2 1 1 Y_H04J 2 - - - - 
B_H05G 2 - - - - Y_H04L 2 6 2 2 4 
Y_A47J 2 - - - - Y_H04M 2 6 2 2 - 
Y_B23Q 2 6 2 - - Y_H04N 2 6 2 2 - 
Y_B24B 2 - - - - Y_H04Q 2 6 2 - - 
Y_B25J 2 6 2 - - Y_H04W 2 6 2 2 4 
Y_B28D 2 - - - - Y_H05B 2 2 2 1 - 
Y_B60R 2 2 2 - - B_A01B 3 1 7 3 - 
Y_B61L 2 - - - - B_A01C 3 1 7 3 - 
Y_F24C 2 - - - - B_A01D 3 1 7 3 - 
Y_G01B 2 - - - - B_A01F 3 - - - - 
Y_G01C 2 - - - - B_A61G 3 2 3 - - 
Y_G01D 2 6 2 - - B_B60B 3 2 3 - - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
B_B60G 3 2 3 3 - B_F02P 3 7 3 - - 
B_B60K 3 2 3 3 - B_F03D 3 2 3 - - 
B_B60L 3 2 3 - - B_F03G 3 - - - - 
B_B60M 3 - - - - B_F04B 3 7 3 3 - 
B_B60P 3 4 6 - - B_F04C 3 7 7 3 - 
B_B60S 3 - 3 - - B_F04F 3 2 - - - 
B_B60T 3 2 3 3 - B_F15B 3 2 3 3 - 
B_B60W 3 2 3 3 - B_F16C 3 2 3 6 - 
B_B61B 3 2 3 - - B_F16D 3 2 3 3 - 
B_B61C 3 - - - - B_F16F 3 2 3 3 - 
B_B61D 3 2 3 6 - B_F16H 3 2 3 3 - 
B_B61F 3 - 3 - - B_F16K 3 7 3 5 - 
B_B62B 3 2 - - - B_F16N 3 2 - - - 
B_B62D 3 2 3 3 - B_F17C 3 7 3 - - 
B_B62J 3 2 3 - - B_F17D 3 - - - - 
B_B62K 3 2 3 - - B_F41H 3 - - - - 
B_B62M 3 2 3 3 - B_G01F 3 7 3 5 - 
B_B63B 3 2 3 - - B_G01H 3 - - - - 
B_B63H 3 2 3 - - B_G01L 3 7 3 1 - 
B_B66B 3 2 3 - - B_G01M 3 7 3 5 - 
B_B66C 3 2 3 - - B_G01P 3 7 3 1 - 
B_B66F 3 2 3 - - B_G05G 3 - - - - 
B_B67D 3 1 3 - - B_H01T 3 7 3 - - 
B_E01B 3 - - - - B_H02K 3 2 3 3 - 
B_E01H 3 - - - - B_H02P 3 2 3 3 - 
B_E02B 3 2 1 - - Y_A01C 3 1 - - - 
B_E02D 3 2 1 - - Y_A01D 3 - - - - 
B_E02F 3 2 3 - - Y_A61G 3 - - - - 
B_E04H 3 2 1 - - Y_B60B 3 2 - - - 
B_F01B 3 7 - - - Y_B60K 3 2 3 3 - 
B_F01C 3 7 - - - Y_B60L 3 2 3 3 - 
B_F01L 3 7 3 5 - Y_B60S 3 - - - - 
B_F01M 3 7 3 - - Y_B60T 3 2 3 - - 
B_F01P 3 7 3 - - Y_B60W 3 2 3 3 - 
B_F02B 3 7 3 5 - Y_B61B 3 - - - - 
B_F02D 3 7 3 5 - Y_B61C 3 - - - - 
B_F02F 3 7 3 5 - Y_B61D 3 2 3 6 - 
B_F02M 3 7 3 5 - Y_B62D 3 2 3 - - 
B_F02N 3 7 3 - - Y_B62J 3 - - - - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
Y_B62K 3 - - - - B_A47B 4 4 - - - 
Y_B62M 3 2 3 - - B_A47C 4 4 6 - - 
Y_B63B 3 2 3 - - B_A47F 4 - - - - 
Y_B63H 3 2 3 - - B_A47L 4 8 7 3 - 
Y_B66B 3 - - - - B_A63H 4 - - - - 
Y_B66C 3 2 - - - B_B08B 4 1 1 - - 
Y_B66F 3 - - - - B_B21B 4 1 1 6 - 
Y_E02B 3 2 3 - - B_B21C 4 1 - - - 
Y_E02D 3 2 - - - B_B21D 4 4 3 6 - 
Y_E02F 3 2 - - - B_B22C 4 1 1 6 - 
Y_E04H 3 2 3 - - B_B22D 4 1 1 6 - 
Y_F01C 3 7 - - - B_B22F 4 1 1 6 - 
Y_F01L 3 7 3 5 - B_B23H 4 6 6 - - 
Y_F01M 3 7 - - - B_B23K 4 1 1 6 - 
Y_F01P 3 7 3 - - B_B23P 4 4 6 6 - 
Y_F02B 3 7 3 5 3 B_B24C 4 1 1 - - 
Y_F02D 3 7 3 5 3 B_B25B 4 4 6 - - 
Y_F02F 3 7 3 5 - B_B25C 4 - - - - 
Y_F02M 3 7 3 5 - B_B60H 4 4 7 3 - 
Y_F02N 3 7 3 3 - B_B60N 4 4 6 - - 
Y_F02P 3 7 3 5 - B_B64C 4 4 6 3 - 
Y_F03B 3 2 3 - - B_B64D 4 4 6 3 - 
Y_F03D 3 2 3 3 - B_B64F 4 4 6 - - 
Y_F04B 3 7 - - - B_C21D 4 1 1 6 1 
Y_F04C 3 - - - - B_C22C 4 1 1 6 1 
Y_F15B 3 2 - - - B_C22F 4 1 1 6 - 
Y_F16C 3 2 3 - - B_D06F 4 8 7 3 - 
Y_F16D 3 2 3 - - B_F01D 4 4 6 6 1 
Y_F16F 3 2 3 - - B_F01K 4 4 6 - - 
Y_F16H 3 2 3 3 - B_F02C 4 4 6 6 - 
Y_F16K 3 7 3 - - B_F02G 4 4 - - - 
Y_F17C 3 7 3 - - B_F02K 4 4 6 - - 
Y_F23K 3 - - - - B_F04D 4 4 6 6 - 
Y_G01F 3 7 - - - B_F16J 4 4 6 6 - 
Y_G01L 3 - - - - B_F22B 4 4 6 6 - 
Y_G01M 3 7 3 - - B_F23C 4 4 6 6 - 
Y_G01P 3 - - - - B_F23D 4 4 6 6 - 
Y_H02K 3 2 3 3 - B_F23K 4 - - - - 
Y_H02P 3 2 3 3 - B_F23L 4 4 6 - - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
B_F23M 4 - 6 - - Y_F02G 4 4 6 6 - 
B_F23N 4 4 6 6 - Y_F02K 4 4 6 6 - 
B_F23R 4 4 6 6 - Y_F03G 4 4 - - - 
B_F24B 4 4 - - - Y_F04D 4 4 6 6 - 
B_F24D 4 4 7 3 - Y_F15D 4 - - - - 
B_F24F 4 4 7 3 - Y_F16J 4 4 6 - - 
B_F24H 4 4 7 3 - Y_F22B 4 4 6 - - 
B_F25B 4 4 7 3 - Y_F23C 4 4 6 6 - 
B_F25D 4 4 7 3 - Y_F23D 4 4 6 - - 
B_F28D 4 4 7 3 - Y_F23L 4 4 6 - - 
B_F28F 4 4 7 3 - Y_F23M 4 - - - - 
B_F42B 4 - - - - Y_F23N 4 4 6 - - 
B_G05D 4 4 7 3 - Y_F23R 4 4 6 6 - 
B_G10K 4 7 1 - - Y_F24D 4 4 7 3 - 
B_G21C 4 1 1 - - Y_F24F 4 4 7 - - 
B_G21F 4 1 1 - - Y_F24H 4 4 7 - - 
Y_A47L 4 8 7 - - Y_F25B 4 4 7 3 - 
Y_B08B 4 1 - - - Y_F25D 4 4 7 - - 
Y_B21B 4 - - - - Y_F28D 4 4 7 3 - 
Y_B21D 4 4 - - - Y_F28F 4 4 7 3 - 
Y_B22C 4 - - - - Y_G05D 4 4 7 3 - 
Y_B22D 4 1 - - - Y_G21C 4 1 1 - - 
Y_B22F 4 1 1 6 - Y_G21D 4 1 - - - 
Y_B23K 4 1 1 6 - Y_G21F 4 1 - - - 
Y_B23P 4 4 6 - - B_A23N 5 - - - - 
Y_B24C 4 - - - - B_A47K 5 3 1 - - 
Y_B33Y 4 - - - - B_A62B 5 - - - - 
Y_B60H 4 4 7 - - B_A62D 5 3 4 - - 
Y_B60N 4 - - - - B_B01D 5 3 4 5 3 
Y_B64C 4 4 6 3 - B_B01F 5 3 4 5 - 
Y_B64D 4 4 6 3 - B_B01J 5 3 4 5 3 
Y_B64F 4 - - - - B_B02C 5 1 1 - - 
Y_C21D 4 1 1 - - B_B03B 5 1 - - - 
Y_C22C 4 1 1 6 - B_B03C 5 3 4 - - 
Y_C22F 4 - - - - B_B03D 5 - - - - 
Y_D06F 4 8 7 3 - B_B04B 5 - - - - 
Y_F01D 4 4 6 6 - B_B04C 5 3 - - - 
Y_F01K 4 4 6 6 - B_B07B 5 1 1 - - 
Y_F02C 4 4 6 6 - B_B09B 5 3 4 - - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
B_B09C 5 3 4 - - Y_A47K 5 3 - - - 
B_B30B 5 1 8 - - Y_A62D 5 3 4 - - 
B_B65F 5 1 8 - - Y_B01D 5 3 4 5 3 
B_C01B 5 3 4 5 1 Y_B01F 5 3 4 - - 
B_C01C 5 - - - - Y_B01J 5 3 4 5 3 
B_C01D 5 - - - - Y_B02C 5 1 1 - - 
B_C01F 5 3 4 - - Y_B03B 5 1 1 - - 
B_C02F 5 3 4 5 - Y_B03C 5 3 - - - 
B_C05F 5 - - - - Y_B03D 5 - - - - 
B_C05G 5 3 - - - Y_B07B 5 1 1 - - 
B_C07B 5 3 4 5 - Y_B09B 5 3 4 - - 
B_C07C 5 3 4 5 2 Y_B09C 5 - - - - 
B_C10B 5 3 - - - Y_B30B 5 1 - - - 
B_C10G 5 3 4 5 - Y_B65F 5 1 8 - - 
B_C10J 5 3 4 - - Y_C01B 5 3 4 5 - 
B_C10K 5 - - - - Y_C01C 5 3 4 - - 
B_C10L 5 3 4 5 - Y_C01F 5 3 - - - 
B_C10M 5 3 4 5 1 Y_C01G 5 3 4 - - 
B_C10N 5 - 4 5 - Y_C02F 5 3 4 5 - 
B_C21B 5 1 4 - - Y_C05F 5 3 4 - - 
B_C21C 5 1 4 - - Y_C05G 5 3 - - - 
B_C22B 5 3 4 - - Y_C07B 5 3 4 5 - 
B_C25C 5 3 4 - - Y_C07C 5 3 4 5 - 
B_D06B 5 - - - - Y_C10B 5 3 4 - - 
B_D21B 5 - - - - Y_C10G 5 3 4 5 - 
B_D21C 5 1 1 - - Y_C10J 5 3 4 - - 
B_D21D 5 - - - - Y_C10K 5 3 4 - - 
B_D21F 5 1 1 - - Y_C10L 5 3 4 5 - 
B_E03C 5 3 7 - - Y_C10M 5 - - - - 
B_E03D 5 3 - - - Y_C11C 5 3 - - - 
B_E03F 5 3 1 - - Y_C12M 5 3 4 5 - 
B_F01N 5 7 4 5 3 Y_C21B 5 1 4 - - 
B_F23G 5 3 4 - - Y_C21C 5 1 4 - - 
B_F23J 5 3 4 - - Y_C22B 5 3 4 1 - 
B_F25J 5 3 4 5 - Y_C25C 5 3 - - - 
B_F26B 5 3 4 - - Y_D21B 5 1 1 - - 
B_F27B 5 1 4 - - Y_D21C 5 1 1 - - 
B_F27D 5 1 4 - - Y_D21F 5 - - - - 
B_G01T 5 - 4 5 3 Y_E03B 5 3 - - - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
Y_E03F 5 3 - - - B_C07D 6 5 5 4 2 
Y_F01N 5 7 4 5 3 B_C07F 6 5 5 4 1 
Y_F23G 5 3 4 - - B_C07H 6 5 5 4 2 
Y_F23J 5 3 4 - - B_C07J 6 5 5 - - 
Y_F25J 5 3 4 - - B_C07K 6 5 5 4 2 
Y_F26B 5 3 4 - - B_C08B 6 5 5 4 - 
Y_F27B 5 1 4 - - B_C11B 6 3 5 - - 
Y_F27D 5 1 4 - - B_C11C 6 - 5 - - 
B_A01H 6 5 5 4 - B_C11D 6 5 5 4 2 
B_A01J 6 - - - - B_C12C 6 - - - - 
B_A01K 6 3 5 4 - B_C12M 6 3 5 4 - 
B_A01N 6 5 5 4 2 B_C12N 6 5 5 4 2 
B_A01P 6 5 5 4 - B_C12P 6 5 5 4 2 
B_A21D 6 - 5 - - B_C12Q 6 5 5 4 2 
B_A22C 6 - - - - B_C12R 6 5 5 4 2 
B_A23B 6 5 5 - - B_C13K 6 - - - - 
B_A23C 6 5 5 4 - B_C40B 6 - - - - 
B_A23D 6 - 5 4 - B_G01N 6 5 5 4 2 
B_A23F 6 - - - - Y_A01H 6 5 - - - 
B_A23G 6 5 5 4 - Y_A01K 6 3 - - - 
B_A23J 6 - 5 - - Y_A01N 6 5 5 4 - 
B_A23K 6 5 5 4 - Y_A01P 6 - - - - 
B_A23L 6 5 5 4 2 Y_A23B 6 5 5 - - 
B_A45D 6 - - - - Y_A23K 6 5 5 - - 
B_A61B 6 5 5 4 2 Y_A23L 6 5 5 - - 
B_A61C 6 5 5 4 - Y_A61B 6 5 5 - - 
B_A61F 6 5 5 4 1 Y_A61F 6 - - - - 
B_A61H 6 - - - - Y_A61K 6 5 5 4 2 
B_A61J 6 1 5 - - Y_A61L 6 5 5 - - 
B_A61K 6 5 5 4 2 Y_A61M 6 5 - - - 
B_A61L 6 5 5 4 1 Y_A61P 6 5 5 4 2 
B_A61M 6 5 5 4 - Y_B07C 6 - - - - 
B_A61N 6 5 5 4 - Y_C07D 6 5 5 4 2 
B_A61P 6 5 5 4 2 Y_C07F 6 5 5 4 - 
B_A61Q 6 5 5 4 2 Y_C07H 6 5 5 4 - 
B_A63B 6 5 - - - Y_C07J 6 5 - - - 
B_B01L 6 5 5 4 - Y_C07K 6 5 5 4 2 
B_B07C 6 - 2 - - Y_C08B 6 - - - - 
B_B27K 6 - - - - Y_C11B 6 3 - - - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A1 (continued) 
 Length 

 All 2-4 5-8 9-14 15-28 
Y_C11D 6 - - - - 
Y_C12N 6 5 5 4 2 
Y_C12P 6 5 5 4 - 
Y_C12Q 6 5 5 4 - 
Y_C12R 6 5 - - - 
Y_C23F 6 - - - - 
Y_G01N 6 5 5 4 - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A2. Cluster membership of brown/green & countries, by trajectory length 
 Length  Length 

 All 2-4 5-8 9-14 15-28  All 2-4 5-8 9-14 15-28 
B_?? 1 1 1 1 1 Y_PT 1 1 - - - 
B_AT 1 1 1 1 1 Y_SG 1 1 2 - - 
B_BR 1 1 2 - - Y_SI 1 - - - - 
B_CH 1 1 1 1 1 Y_TR 1 1 - - - 
B_CZ 1 1 1 - - Y_ZA 1 2 1 - - 
B_DE 1 1 1 1 1 B_AR 2 - - - - 
B_DK 1 1 1 1 1 B_BE 2 1 1 1 1 
B_ES 1 1 1 1 1 B_CA 2 2 2 1 1 
B_FR 1 1 1 1 1 B_CN 2 3 2 1 2 
B_IT 1 1 1 1 1 B_GB 2 2 2 1 1 
B_LI 1 - - - - B_GR 2 2 1 - - 
B_MY 1 - - - - B_HK 2 - - - - 
B_NL 1 1 1 1 1 B_HR 2 - - - - 
B_PL 1 1 1 1 - B_HU 2 3 1 1 - 
B_PT 1 1 2 - - B_IL 2 2 2 1 - 
B_SI 1 - 2 - - B_IN 2 2 2 1 1 
B_SK 1 - - - - B_JP 2 3 2 1 1 
B_TR 1 1 1 1 - B_KR 2 3 2 1 2 
Y_?? 1 1 1 2 2 B_LU 2 1 1 1 - 
Y_AT 1 1 1 2 - B_MC 2 - - - - 
Y_BE 1 1 1 2 - B_MX 2 2 - - - 
Y_BR 1 1 1 - - B_RO 2 - - - - 
Y_CH 1 1 1 2 2 B_RU 2 2 2 1 - 
Y_CZ 1 1 1 - - B_SA 2 2 2 - - 
Y_DE 1 1 1 2 2 B_SG 2 2 2 1 - 
Y_DK 1 1 1 2 - B_SU 2 1 - - - 
Y_ES 1 1 1 2 - B_TW 2 3 2 1 - 
Y_FR 1 1 1 2 2 B_UA 2 - - - - 
Y_GB 1 2 2 2 2 B_US 2 2 2 1 1 
Y_GR 1 1 - - - Y_CN 2 3 2 2 2 
Y_HU 1 1 - - - Y_HK 2 - - - - 
Y_IE 1 2 1 - - Y_IL 2 2 1 1 - 
Y_IT 1 1 1 2 1 Y_IN 2 2 2 1 - 
Y_LU 1 1 1 - - Y_JP 2 3 2 2 2 
Y_MX 1 2 - - - Y_KR 2 3 2 1 2 
Y_NL 1 1 1 2 - Y_MY 2 - - - - 
Y_NZ 1 2 1 - - Y_RU 2 2 2 2 2 
Y_OTHER_Cntry 1 1 1 1 - Y_SA 2 2 - - - 
Y_PL 1 1 1 - - Y_TW 2 3 2 2 - 

Note: a dash (-) indicates that a node is not in the network. 
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Table A2 (Continued) 

 Length 

 All 2-4 5-8 9-14 15-28 
Y_US 2 2 2 2 2 
B_AU 3 2 2 1 - 
B_FI 3 4 3 1 1 
B_IE 3 2 2 1 - 
B_NO 3 4 3 1 - 
B_NZ 3 2 2 1 - 
B_OTHER_Cntry 3 1 2 1 - 
B_SE 3 4 3 1 2 
B_ZA 3 2 2 1 - 
Y_AU 3 2 1 1 - 
Y_CA 3 2 2 1 - 
Y_CL 3 - - - - 
Y_FI 3 4 3 1 - 
Y_NO 3 4 3 2 - 
Y_SE 3 4 3 2 - 

Note: a dash (-) indicates that a node is not in the network. 
 
 
 


