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Abstract 
 
We investigate knowledge convergence and knowledge cohesion in the European Union 
(EU) by analysing Framework Programme (FP) project collaborations and patent 
inventor collaborations from 2011 to 2019 at the NUTS2 regional level. Assuming that 
collaborations induce knowledge accumulation we differentiate between convergence 
and cohesion and conceptualize knowledge cohesion. Our empirical strategy is based on 
Social Network Analysis (SNA) and Simulation Investigation for Empirical Network 
Analysis (SIENA) where we analyse whether network structure affects regional 
characteristics as well as what factors and indicators affect network structure. The SNA 
and descriptive analysis show evidence for knowledge convergence indicating that 
knowledge-poor regions tend to catch up with knowledge-rich regions. SIENA results 
support evidence for convergence. We find that regional characteristics affect network 
structure but regions tend to collaborate with regions that are similar to themselves in 
terms of innovation level and general trust. The findings also indicate that network 
structure does not affect regional characteristics which reveals that collaboration led to 
a certain degree of knowledge convergence but not cohesion.  
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1. Introduction 
 
This paper investigates knowledge convergence and knowledge cohesion in the 
European Union (EU) by analysing Framework Programme (FP) project collaborations 
and patent inventor collaborations seperately. In doing so, we attempt to merge two 
related, but somehow distinct, literatures on EU cohesion policy and collaboration-
induced knowledge diffusion.  
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Investigating knowledge flows through patterns of collaboration between regions of the 
European Union (EU) is vital for building economic and social strategies, given the 
importance of “cooperation” in the EU agenda. EU Cohesion Policy is one such strategy 
that aims to strengthen economic, social and territorial cohesion by reducing disparities 
between EU regions. While there is a well developed literature on EU cohesion policy (e.g., 
Farole, Rodriguez-Pose and Storper, 2011; Bouayad-Agha, Turpin and Vedrine, 2013; 
Crescenzi and Giua, 2016; Di Cataldo, Monastiriotis and Rodriguez Pose, 2021) there is 
little research linking collaboration to cohesion (Hoekman et al., 2013; Lahdelma and 
Laakso, 2016; Boumans and Ferry, 2019). Moreover, there are various problems in 
measuring (especially social) cohesion (e.g., Jenson, 2010) and the empirical assessment 
whether the EU's cohesion policy achieved its economic targets (e.g., Dall’Erba and Fang, 
2017; Ehrlich and Overman, 2020; Di Caro and Fratesi, 2021). This paper contributes to 
the EU cohesion literature in several aspects. First, in addition to economic, social and 
territorial cohesion we conceptualize knowledge cohesion and discuss how it differs from 
knowledge convergence. Second, this paper contributes to the empirical assessment 
debate by introducing Stochastic Actor Oriented Models (SOAM) and providing an 
application over FP project and patent inventor collaborations using Simulation 
Investigation for Empirical Network Analysis (SIENA). While our analysis helps to 
understand whether there is knowledge cohesion in EU regions it could be adopted for 
analysing economic and social cohesion as well. Third, by analysing collaborations to 
understand cohesion we extend the collaboration-cohesion link as stated above. 
 
A crucial aspect of enhancing knowledge diffusion is inducing collaboration between EU 
regions. This strategy is both compatible with the development of the European Research 
Area (ERA) and the “strengthening research, technological development and innovation” 
thematic objective of the EU cohesion policy.  There is a developing literature on the 
impact of collaboration-induced knowledge diffusion on outcome variables (e.g., 
Bergman and Maier, 2009; Wanzenbock, Scherngell and Brenner, 2014; Hazir, LeSage and 
Autant-Bernard, 2016; De Noni, Orsi and Belussi, 2018; van der Wouden and Rigby, 
2019).  For instance, Balland, Boschma and Ravet (2019) show that peripheral countries 
have become more integrated to the core by analysing FP project data from FP6 to H2020. 
This paper contributes to this literature in two aspects. First, to our knowledge this is the 
first research that uses SIENA to analyse collaboration networks. In this way we can 
analyse both the impact of regional characteristics on network structure and how 
network structure affects regional characteristics. Second, we compare two distinct 
collaboration networks: (i) FP project collaboration which we view as a science network, 
(ii) patent inventor collaboration network which we view as an invention network. 
Comparing these two distinct networks using a similar method brings robustness.    
 
The findings of the social network analysis (SNA) indicates that there is an overall 
tendency for increased collaboration in the FP project network. Falling distance between 
regions in terms of project collaboration, increased clustering and network closure can 
be taken as signs of knowledge convergence. However, in the patent collaboration 
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network there is a tendency for collaborations to weaken after 2015. The findings of the 
descriptive analysis reveals that there is persistence at the top-5 percentile regions 
meaning that knowledge hubs in 2011 remain to be knowledge hubs in 2019. Despite this 
finding, there is also an average trend of catching up, assuming that through 
collaborations regions accumulate knowledge. We find that in both the FP project 
network and the patent inventor network regions that are less endowed with knowledge 
tend to catch up with regions that are better endowed with knowledge, which can be 
taken as a sign of knowledge convergence. Finally, SIENA results show that while there 
are signs of knowledge convergence there is no evidence for knowledge cohesion.  
 
This paper is organized as follows. Section 2 conceptualizes knowledge cohesion 
focussing on the difference between cohesion and convergence. Section 3 introduces data 
used in this research and the details of our empirical approach. The next section discusses 
findings under three subtitles, the findings of the social network analysis, the descriptive 
analysis and finally SIENA. Section 5 concludes by summarizing the findings and 
discussing policy implications in detail. 
 
2. Knowledge convergence and knowledge cohesion 
 
With the rise of evolutionary economics in the 1980s and 1990s, we observe a systematic 
and collective action-oriented account of treating knowledge in the literature (Nelson and 
Winter, 1982; Freeman et al., 1982; Freeman, 1987; and Lundvall, 1992). In addition to 
the individual dimension of learning, evolutionary economics has highlighted the 
processes of knowledge spillovers in the emergence of a collective knowledge base. The 
interaction through the collective knowledge base is assumed to enhance learning and 
learning of “how to learn”. The systematic repetition of these interactions causes the 
genesis of knowledge networks within which not only codified but also tacit knowledge 
are transferred. Besides facilitating the transfer of knowledge among the actors, 
networks are also the means through which learning practices can be shared and 
transmitted. In other words, actors acquire the knowledge of “how to learn”. This 
discussion highlights the difference between knowledge convergence and knowledge 
cohesion. 
  
We take knowledge convergence to be mainly the outcome of three processes: 1) 
collaborations between knowledge actors, 2) Their mobility and 3) knowledge spillovers 
resulting from codified knowledge products like patents and academic publications. On 
the other hand, we take knowledge cohesion as the result of these processes accompanied 
by shared practices, institutions, and coherence in the innovation environment that 
knowledge actors are embedded in. In this sense, while both tacit and codified knowledge 
can be transferred in both contexts, the difference lies mainly in the extent to which the 
knowledge actors share a common institutional, social and economic framework. As a 
result, we contend that in a cohesive knowledge environment, it is not only knowledge 
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that is exchanged per se, but also, and on a deeper level, the practices that give rise to the 
creation and evolution of knowledge.  
 
Although it is generally assumed that collaboration leads to knowledge convergence, the 
extent of knowledge convergence has not been operationalised at broader levels and for 
different types of networks, such as project or inventor networks.  In this study, we 
conceptualise knowledge convergence as an increase in collective knowledge and 
measure it as collaborative learning at the inter-regional unit of analysis. In addition to 
knowledge convergence this study provides evidence for knowledge cohesion and its 
socio-economic implications. Figure 1 summarizes this theoretical framework. 
 
Figure 1: Theoretical Framework 

 
 
2.1.  Knowledge Convergence 
 
Knowledge convergence is the growth of commonly shared knowledge that is brought by 
all the collaborating partners. It is the process in which two or more people share mutual 
understanding through social interaction, and the process of knowledge generation is 
believed to reflect its social nature (Nonaka, 1994; Brown and Campione, 1996; Hutchins, 
1991, 1995; Ickes and Gonzales, 1996; Lave and Wenger, 1991; Resnick, 1991; Rogoff, 
1998; Roschelle, 1992; Vygotsky, 1978; Webb and Palinscar, 1996; Teasley et al., 2008). 
Knowledge convergence is one of the most fundamental aspects of cognitive 
interdependencies among collaborators (Ickes and Gonzales, 1996; Roschelle, 1992; 
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Fischer and Mandl 2005). In this context, the dynamic capabilities of knowledge actors, 
referring to the skills, procedures, organizational structures, and decision rules are the 
key factors for generating value (Teece, et al., 1997). Convergence occurs because the 
mutual nature of collaboration leads to an increasing similarity in the cognitive 
representations of group members (Jeong and Chi, 2007). The literature on knowledge 
convergence is generally based on the perceptive definition of knowledge convergence 
and present qualitative studies for the understanding of mechanisms behind it (e.g., 
Dretske, 1981; Azmitia, 1988; Forman and Cazden, 1985; Brown and Duguid, 1991; 
Nonaka; 1994; Hutchins, 1995; Graesser, et al., 1995; Roschelle, 1992; Roschelle and 
Teasley, 1995). We contend that to understand convergence we can benefit from 
collaboration induced networks.  
 
Based on this notion of common knowledge, we define knowledge convergence to be an 
increase in common knowledge following collaboration. Moreover, reminding the three 
processes that lead to convergence above, to the extent that collaboration is responsible 
for knowledge convergence, the level of convergence would depend on interactions 
between knowledge actors. Thus, the process is endogenous with a bidirectional causality 
and continuous feedback loops reactivate new opportunities for the agents in the process. 
At the micro level, one of the effects of increased collaborations between organizations is 
their convergence in the knowledge space, rendering them more similar to each other in 
terms of common technological competences (Mowery et al., 1998). However, there is 
also diminishing returns from such interactions, because as convergence increases 
learning that takes place between organizations reduces as they can add less and less to 
each others' knowledge (Mowery et al., 1998; Gilsing et al., 2008). Accordingly, one of the 
findings in the literature is that an inverted-U relationship exists between technological 
distance between actors and their learning (Mowery, et al., 1998; Gilsing et al., 2008, 
Schoenmakers and Duysters, 2006; Nooteboom et al., 2007). However, this strand of 
research often measures knowledge through bibliometric analysis. Thus, the aspects of 
knowledge cohesion between actors are left unexplored. 
  
The new opportunities created by the interactive learning spaces can be described as the 
successful innovation activities which utilizes the common knowledge silos created by 
the above-mentioned interactive process. However, the mechanism is not automatic 
and/or self-adjusting and there needs to be a menu of framework conditions and specific 
characters of cognitive processes based in regional/local ecosystems.  The capability of 
regional ecosystems to integrate to an upper-level system such as national, supranational 
and global systems determine sustainability of success of these systems. Moreover, the 
dynamic nature of this articulation determines the co-evolution of the whole system and 
establishes hot spots as evident from a recent study on global networks (WIPO, 2019) 
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2.2.  Knowledge Cohesion 
  
Knowledge has always been an endogenous element of cohesion, and both knowledge 
convergence and cohesion are strongly linked with each other. Just as there could be 
knowledge cohesion without convergence, the two processes can also accompany each 
other. For example, some segments of regional economies can be highly cohesive, sharing 
similar contexts, cultures and capabilities, yet draw upon completely different knowledge 
bases, as in India, Turkey and Mexico. However, convergence does not necessarily 
guarantee cohesion. Knowledge convergence emancipates the flows of knowledge 
through the inter- and intra-network relations whereas it has the potential to create new 
traps of enslavement if the framework conditions for cohesion do not historically exist or 
are created to some extent. Therefore, knowledge cohesion is not simply deduced to a 
linear process. It includes the non-linear and complex relations of transferring learning 
practices and mechanisms of how to learn. For example, without the existence of sales 
and marketing knowledge, the scientific and technological knowledge may be useless. 
Another possibly more chaotic and complex social process is the transfer of knowledge 
cohesion to social and economic cohesion through which several complicated 
mechanisms among the acts and actors are observed. The initial definition of knowledge 
cohesion is provided as the unification of combinatorial knowledge bases as a whole 
which makes the knowledge convergence as a sufficient condition of the process towards 
knowledge cohesion.  
  
Based on the above discussion, it is possible to summarize knowledge convergence and 
cohesion on a two-dimensional taxonomy as presented in Figure 2. It is important to note 
that we focus on the macro level, which refers to cohesion between different regions in 
an innovation system. In doing so, it will be useful to clarify how we distinguish between 
knowledge convergence and knowledge cohesion on a two-dimensional axis. 
 
We take knowledge convergence in terms of the common knowledge bases. Regions with 
low knowledge convergence (low common knowledge) correspond to the cases where 
significant divergence is expected in terms of the intensity and level of knowledge 
diffusion and generation activities. For example, regions’ participation in global 
knowledge networks, the levels of public and private R&D activities, innovative outputs 
etc., may exhibit significant differences, marked distinctly as a gap between high and low 
performing regions. On the other hand, regions with high knowledge convergence will be 
more similar to each other, in terms of the indicators of overall science and technology 
performance. 
 
When it comes to knowledge cohesion, on the other hand, our focus shifts from the output 
indicators, to a process view, whereby we focus on the general institutional space that 
shapes science, technology and innovation activities. In this sense, when different regions 
are highly cohesive, they would have shared norms, values and institutions in their 
systems of science and technology, as compared to other regions, whether they are 
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connected through network ties or not (in most cases there will be increased networking 
activities as well). In a way, cohesiveness implies that innovative actors are bound 
together by tangible or intangible ties, and their communication is largely facilitated 
through shared norms and values in knowledge practices, in the generation and diffusion 
of knowledge. By engendering trust, such cohesiveness largely facilitates processes of 
knowledge diffusion and sharing. 
 
Figure 2. Taxonomy of knowledge dynamics: Convergence and cohesion 

Convergence / 
cohesion 

High Low 

  
High 

KNOWLEDGE SPACE II 
 
High convergence, high cohesion 
 
Network characteristics: dense 
networks among similar actors 
  
Risks: Difficulty of novelty creation, 
over-embeddedness, lock-in, 
information overload 
  
Benefits: Reduced transaction costs, low 
risk of wrongly performing an R&D and 
innovation activity 
  
  
  
  

 KNOWLEDGE SPACE III 
 
High convergence, low cohesion 
  
Network characteristics: largely 
isolated and possible competitive 
clusters with (often) weak ties between 
them 
  
Risks: lack of common broad 
institutional frameworks prevent smooth 
knowledge flows, trust, social capital, etc. 
  
Benefits: generation of novelty due to 
coexistence of diversity on one hand, and 
common (field specific) knowledge base 
on the other. Weak ties between clusters 
can promote novelty generation 
  

  
Low 

KNOWLEDGE SPACE I 
 
Low convergence, high cohesion 
  
Network characteristics: core -
periphery 
  
Risks: increased inequality and access 
opportunities to S&T 
  
Benefits: better potential for knowledge 
flows due to shared practices and 
institutions, and better potential creation 
of novelty due to new ideas that can 
arrive from the periphery. Sharing of 
knowledge is better supported. 
 

 KNOWLEDGE SPACE IV 
 
Low convergence, low cohesion 
  
Network characteristics: isolation 
  
Risks: sunk costs in R&D and innovation 
activities, not able to follow the common 
path of technological development 
  
Benefits: Learning by doing processes 
may help indigenous innovations 

 
In conclusion, while there is a rich literature on knowledge convergence, and, it is 
surprising that the concept of knowledge cohesion has not been developed before. As for 
knowledge convergence, it refers to the extent to which various actors form, access and 
benefit from a common pool of knowledge stock. At the same time, cohesion, as defined 
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in different contexts, often highlights the forces that keep actors together in a system. 
Conceptualizing knowledge cohesion is important, because it is essentially a range of 
practices in knowledge generation and diffusion that lie behind the success of many 
regions, and explored within a scattered array of disciplines. These practices cannot be 
well understood with reference to knowledge convergence alone, as was often the case 
in the literature.  
 
There are several premises on which our discussion is built upon. First, we take 
knowledge dynamics as the main force behind change in societies and economies. Second, 
collaborations between different actors in an innovation system are the main motor 
behind knowledge flows. Third, our focus is not only on the mere transfer of knowledge, 
but also on the specific processes through which actors learn how to learn. Fourth, we 
contend that a cohesive knowledge environment implies, over and beyond convergence, 
the processes through which actors share common norms and values, create 
environments of trust and open knowledge sharing, and are able to maintain both 
homogeneity and diversity in the knowledge systems. As a result, an exploration of the 
extent to which a knowledge environment is cohesive requires thinking of cohesion along 
with several other factors that have been deemed as critical in the literature. These are, a 
reconceptualization of the role of proximity, of social capital and networks, of uncertainty 
and the way it is coped with in the innovation systems, as well as a better understanding 
of how actors are equipped with capabilities to create new paths towards sustainability 
in the face of path dependent trajectories. The empirical application of this paper will 
consider the functioning of the concepts outlined in this section as the existing data paves 
the way for such an analysis. The long time series data on FPs and patents certainly 
provides evidence for testing the existence of knowledge convergence while it may also 
present some considerable evidence for knowledge cohesion.   

a. 2.3.  The role of research networks in knowledge convergence and 
cohesion 

  
In practical terms, in this paper we take the policies aimed at reducing the knowledge gap 
between star regions (i.e., the knowledge hubs) and others to refer to knowledge 
convergence. Therefore, in line with the upper part of Figure 1, increase in common 
knowledge and similarity between S&T indicators would imply convergence. On the 
other hand, given the importance of the transfer of learning practices (the bottom part in 
Figure 1), we contend that a distinction between convergence and cohesion is of 
paramount importance.  
 
In investigating these issues, the evolution of networks can provide important insights. 
First, convergence will be revealed by a region’s integration into knowledge networks 
over time. For example, initially peripheral regions integration into the core of the 
network would be an indicator that the gap between regions are reducing, thus signalling 
increased convergence. However, such an analysis may not be sufficient to analyse the 
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extent to which regions become more cohesive in terms of the convergence in their 
scientific and knowledge based institutions, and their capabilities to develop practices 
about second order learning (learning how to learn). For example, some regions 
collaborate more than others, and thus they converge in terms of common knowledge, 
with their partners. However, this does not mean that the region’s cohesiveness with 
others will be high. Some regions, although they converge, can have a big gap with 
partners in terms of their capacity and capabilty that enable transfer of skills and 
capacities (second order learning). So as to have a better understanding of these, we 
argue that the drivers of network evolution can reveal some insights. 
  
The transfer of skills and capabilities is important especially given that many EU regions 
are unable to use funds effectively to boost innovation, as at one point institutions 
become a constraining factor in their ability to use the funds (Schmidt, 2019). Skills and 
funds can be better transferred with similar institutions. When institutions are very 
different in terms of capabilities, new skills acquired will be difficult to assimilate. A 
region which does not have capabilities and relevant institutions to build upon what it 
learns, might lag behind in terms of long term innovation performance, although it 
participates in research networks. For these purposes, in the next sections, we analyse 
the drivers of networks in science and invention networks. We compare structural 
characteristics and analyse the differences in the drivers of their evolution so as to 
develop some insights about convergence and cohesion dynamics. 
  
3. Methodology and data 
 
The empirical strategy rests on three steps: (i) using social network analysis (SNA) to 
analyse collaboration networks over time, (ii) employing centrality indicators from the 
SNA to provide descriptive statistics and simple Ordinary Least Squares (OLS) 
estimations to assess knowledge convergence, (iii) using Simulation Investigation for 
Empirical Network Analysis (SIENA) to investigate the impact of regional characteristics 
on network structure and the impact of network structure on regional characteristics 
simultaneously to assess knowledge convergece and cohesion. Before discussing each 
step further, section 3.1 presents information on data and how networks are formed. 
 
3.1.  Data 

For the analysis, two separate data sources were used: (i) CORDIS database, which 
contains the projects supported by the European Commission (EC) which we used to form 
the framework project (FP) network, (ii) the patent data provided by PATSTAT which we 
used to form the patent network. Both databases were firstly cleaned, separated by years 
(2011, 2013, 2015, 2017 and 2019) so that they match the Regional Innovation 
Scoreboard data and then converted into network data.  
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In CORDIS1, nodes of the FP network were obtained by using the address information of 
each project partner (i.e., the coordinator and all partners in a project) and aggregating 
to the NUTS2 regional definitions.2 Projects acted as the links established among nodes. 
For instance, if a project has 3 partners, then a total of 3 links were established among 
these partners. Links were set up with no direction because we assume that knowledge 
transfer will be mutual. It is extremely difficult to know the direction of knowledge flow 
even if there are large observable differences in terms of knowledge stock among the 
geographies of partners. Patent network was also set up in a similar fashion to the FP 
network; in this case, the links between nodes were formed by the partnerships of 
inventors.  

As stated above we specifically limit our analysis to the period 2011-2019 because RIS 
data at the NUTS2 level is only available in those years.3 RIS contains indicators as well 
as a regional innovation index starting from 2011 for every two years. The regional 
innovation index is used as a proxy for the level of innovation in a region.  

Two types of analysis, a standard Social Network Analysis (SNA) and Simulation 
Investigation for Empirical Network Analysis (SIENA) were carried out using the data 
sets above. While in SNA, only CORDIS and PATSTAT databases were used, in SIENA we 
benefited from all the databases listed in Table 1. By definition a project partnership 
continues as long as the project continues, whereas collaboration in a patent is observed 
only when the patent is granted. To be specific, in the project network, the link is 
sustained until the end of the project. For instance, if a project started in 2011 and ended 
in 2015, the collaboration relationship among the partners in this project is kept in 2013 
and 2015 as well as 2011. On the other hand, if two inventors collaborated in a patent 
granted in 2011 then the collaboration relationship between the inventors is only kept in 
2011 unless the same inventors are granted another patent. Thus the patent network is 
expected to be less dense compared to the FP project network not only because 
collaboration in patents is rare compared to collaboration in projects but also because of 
how the network is formed.    

Table 1: Databases used in the network analyses 
Databases CORDIS PATSTAT 

  Table 5 Table 6 

RIS, EUROSTAT, ESS Table 9 Table 10 

 
As stated earlier our empirical strategy can be summarized in three steps. In the first step, 
CORDIS and PATSTAT were used to form separate project and patent networks. In the 

 
1 https://cordis.europa.eu 
2 Regional statistics by NUTS classification (reg), 
https://ec.europa.eu/eurostat/web/regions/data/database 
3https://ec.europa.eu/info/research-and-innovation/statistics/performance-indicators/regional-
innovation-scoreboard_en 



11 

network each node is a NUTS2 region and links between nodes represent either 
collaboration among project partners (FP network) or collaboration among inventors in 
a patent (patent network). Section 4.1 presents the results of the simple SNA. Then we 
used two common centrality indicators (degree and betweenness), brought them into the 
same measurement unit and provided descriptive analyses comparing the two different 
networks so as to make a preliminary assessment of knowledge convergence. The results 
of these descriptive analyses are presented in section 4.2. Finally in section 4.3 we 
present the results of the SIENA separately for the FP project network and patent 
network. The list of the data and variables used in the analysis, the descriptions and their 
sources are provided in Table 2.         

Table 2: The data, variables and sources 
Data/variable Source 
Framework Project 
collaboration 

Framework project data is freely available from CORDIS. 
https://cordis.europa.eu/projects/en. We used the partners of each project to 
determine collaboration among partners which then aggregated to regional level 
using address information of each partner. 

Patent collaboration PATSTAT. https://www.epo.org/searching-for-patents/business/patstat.html. 
We used names and address information of the inventors. If there are two or 
more names as inventors in a patent we assumed that there is collaboration 
between persons which then aggregated to regional level using address 
information of each inventor. 

Regional innovation 
index (innovation) 

The Regional Innovation Scoreboard provides a regional innovation index from 
2011 onwards available every two years. https://ec.europa.eu/info/research-
and-innovation/statistics/performance-indicators/regional-innovation-
scoreboard_en 

General trust (trust) Question from European Social Survey (ESS) measuring general trust “Most 
people can be trusted or you cannot be careful”. Answers range from 0 (you can’t 
be too careful) to 10 (most people can be trusted). Data available in 2010 to 2018 
every two years, with a total of five waves. 
https://www.europeansocialsurvey.org/data/download.html?r=5 

Human resources in 
science and 
technology 
(employment) 

Persons with tertiary education and/or employed in science and technology as a 
percentage of population available from EUROSTAT. 
https://ec.europa.eu/eurostat/databrowser/view/HRST_ST_RCAT__custom_1665
276/default/table?lang=en 

Patent applications  Patent applications per million population. 2010 data available from EUROSTAT. 
https://ec.europa.eu/eurostat/databrowser/view/pat_ep_rtot/default/table?lan
g=en 

Log Population Logarithm of population 1st of January. 2011 data available from eurostat. 
https://ec.europa.eu/eurostat/databrowser/view/demo_r_d2jan/default/table?l
ang=en 

 
3.2.  Empirical strategy 
 
The first step in our empirical strategy is based on analysing Framework Programme (FP) 
project collaborations and patent collaborations using SNA. How FP project collaboration 
and patent collaboration networks are formed are already explained above. In SNA a new 
network is formed every period. Thus we have five separate networks for 2011, 2013, 
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2015, 2017 and 2019 based on either FP project or patent inventor collaborations. Using 
SNA statistics we compare the project network to the inventor network. 
 
In SNA, the node properties/characteristics are not taken into account and the analysis is 
conducted based only on the existence or absence of links. In other words, the factors that 
could have an affect on the establishment and termination of these links are not 
considered. Such an analysis looks at whether links exist at a given time t. For instance, a 
region’s links to other regions in the form of project collaborations can change over time. 
But at the same time regional characteristics, such as innovation and employment may 
also change. SNA does not consider the impact of network structure on regional 
characteristics or vice versa. SNA also does not analyse structural changes in the network 
(i.e., how the network structure has changed from 2011 to 2013 and how the 2011 
network affected the 2013 network and so on). Section 4.1 presents the results of SNA for 
project collaborations and inventor collaborations separately. This analysis mostly gives 
clues about knowledge convergence. 
 
The second step of the empirical strategy is based on obtaining two commonly used 
centrality indicators (degree and betweenness centrality) from the SNA for each year for 
each collaboration network and bringing them into the same measurement unit such that 
they are comparable over the years. Because the network of a particular year, say 2011, 
is different from another year, say 2015, the network statistics in a period cannot be 
compared to another. To circumvent this problem we used percentile ranks such that 
each “centrality indicator-year-collaboration network” combination is associated with a 
percentile rank. For instance, degree centrality values for 2011 are available for 280 
NUTS regions in the FP project network. Each of these 280 regions has a percentile rank 
that ranges from 1 to 100, higher values indicating better position in the network 
regarding the number of links a region has. When this process is replicated to other years 
we can compare the percentile rank of a region for 2011, 2013, 2015, 2017 and 2019. 
Thus we roughly have an idea regarding the position of the region over time. This 
information is utilized in several ways. 
 
First, we can list top regions according to different centrality indicators over time. 
Looking at top regions enables us to see whether there is persistence in knowledge 
creation assuming that better position in a collaboration network is associated with 
higher knowledge accumulation. It could be the case that starting levels are important 
such that knowledge hubs in 2011 still continue to be knowledge hubs or that through 
collaborations some regions accumulate knowledge and proceed to become a knowledge 
hub. The latter is what we expect to find, the former is a finding against knowledge 
cohesion as it basically states that starting levels are important. But this analysis only 
looks at the top regions. Second, we associate the difference in percentile ranks from 
2011 to 2019 to the starting level percentile rank. We want to see the simple correlation 
between the starting levels and changes over a period. A negative correlation coefficient 
may be a hint toward knowledge convergence. Third, inspired by the simple empirical 
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economic growth model we regress changes in percentile rank on starting level 
percentile rank, log population to control for size, patent applications per million 
inhabitants to control for initial knowledge stock and country dummies to control for 
country fixed effects. We expect to find a negative coefficient for the starting level 
percentile rank to talk about knowledge convergence. Such a finding would tell us that 
regardless of size, initial knowledge stock and country effects, an average region obtains 
a better position in the collaboration network over time. While this finding tells nothing 
about the changes in the network structure and what regional factors affect this change 
or whether network structure affects regional characteristics, it tells us that some regions 
are able to take advantage from collaboration to better link with the network which may 
result in knowledge convergence.              
 
The third step involves estimation of a Stochastic Actor based Model (SOAM) using SIENA 
which considers both the links (changes in the network structure) and the properties of 
the nodes (regional characteristics). SIENA consists of two basic components: networks 
(in our research, structural changes of the network over time) and attributes (in our 
research, regional characteristics such as the innovation level of the region).  
 
SIENA is a statistical tool, which was developed to analyse longitudinal network data such 
that networks are observed in different periods. (Snijders; 1996; 2001; Snijders, van de 
Bunt and Steglich, 2010). It is “a set of methods implemented in a computer program that 
carries out the statistical estimation of models for repeated measures of social networks 
according to the Stochastic Actor-oriented Model (SAOM)” (Ripley et al., 2021). Similar to 
other SAOMs, SIENA allows quantifying the evolution of the network between different 
time periods. SIENA obtains the change in the links between actors using a network 
dynamics approach. In other words, just as in the standard SNA, links are established, 
maintained, and broken in SIENA as well. But when making the calculations, SIENA takes 
into consideration both the network structure (i.e., how the collaboration network 
changes) and the characteristics of the nodes (whether regional characteristics affect 
network structure or vice versa). 
 
SIENA has already been used in various research especially in the psychology literature 
to investigate friendship ties, smoking behaviour, alcohol use and bullying (Cheadle and 
Goosby, 2012; Wang et al., 2015; Leszczensky and Pink, 2015; Shin, 2017; Gremmen et 
al., 2017; Hooijsma et al., 2020). Kalish (2020) provides a decent first introduction of 
SAOM using SIENA to management scholars who especially work on organizational 
research. In this research we used SIENA to analyse co-evolution of one-mode networks 
(collaborations in FP projects and collaboration in patents separately) and individual 
behaviour (characteristics of the regions). This can be viewed as longitudinal network 
data where one or more changing nodal variables can also be treated as dependent 
variables, referred to as behaviour. In such a setting the network will influence the 
dynamics of the behaviour and the behaviour will influence the dynamics of the network. 
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The network data that is used in step two above was reassembled so that SIENA 
estimations could be performed in the R environment. The network data comes from FP 
project and patent inventor collaborations. For the attributes we used three indicators: 
regional innovation index as a proxy for innovation, generalized trust as a proxy for social 
capital and human resources in science and technology to control for size.     

When performing analyses in SIENA, a closed network and at least two time periods are 
required. It is possible to conduct two types of analyses in SIENA. First, one can perform 
a structural analysis similar to the SNA which gives information about the density, 
reciprocity and transitivity regardless of node characteristics (i.e., over time how the 
network structure changes?). SIENA’s distinctiveness comes from the fact that node 
characteristics can be included into the analysis. Node characteristics can be defined as 
attributes and/or behaviour in the system. It could be the case that the node 
characteristics affect the nodes’ establishing, sustaining, and terminating links in the 
network. If this is the case, node characteristics are defined as attributes. For instance, to 
find out whether innovation level of a region affects a region's propensity for establishing 
links in the network, we include the innovation level of each region as an attribute. In our 
analysis we included innovation level, general trust and human resources in S&T of a 
region as attributes. In this way, in addition to network effects such as density, transitivity 
etc. we can also analyse how regional characteristics affect network structure. It could 
also be the case that the network structure affects node characteristics. For instance, we 
may want to know whether a region emulates or tries to reach to an innovation level as 
those regions they establish link with (behaviour). If this is the case then we can assume 
that the regional characteristics are changing in response to changes in network structure 
which we take as a sign for knowledge cohesion.  

Table 3 presents the effects included in SIENA in this research, the graphical displays and 
the interpretation of each effect. In this research we take innovation level and general 
trust as both attribute and behaviour variables, human resources in science and 
technology as an attribute only to control for size, and distance4 among nodes as an 
attribute only to control for geography. 

Finally, Table 4 presents the research questions of the EPO-ARP project proposal and 
associates each research question to a network analysis in this research. The question 
regarding network dynamics is addressed by both the SNA and SIENA. The impact of 
regional characteristics on network structure is mainly analysed by using SIENA. 
Addition to the questions above, we also investigate the impact of network structure on 
regional characteristics to comment on knowledge cohesion as well as knowledge 
convergence. 
 
 
 

 
4 Calculated using Territorial Typologies (TERCEF) https://gisco-services.ec.europa.eu/tercet/flat-files.  

https://gisco-services.ec.europa.eu/tercet/flat-files
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Table 3: Effects included in SIENA and their interpretation 

 
 
Table 4: Research questions of the EPO-ARP project 
Research Questions SNA 

FP Project 
Table 2 

SNA 
Patent 
Table 3 

SIENA 
FP Project 

Table 6 

SIENA 
Patent 
Table 7 

Do patent and research networks have the same 
dynamics? If not, what can be the sources of differences? 

X X X  X  

Do patents have any impact on the establishment of 
research networks?        X 

Do the innovation performances of regions affect the 
establishment of patent networks? 

      X 

Do the innovation performances of regions affect the 
establishment of research networks? 

    X   

 
4. Results 
 
The findings of our research are presented under three subtitles. First we present 
descriptive network statistics of each period (2011 to 2019, five waves) and compare 
science networks (FP project collaborations) to invention networks (patent 
collaborations). Looking at simple statistics like degree, betweenness, closeness and 



16 

eigenvector centrality may show trends in access to and importance within the network 
and even bridging roles. Then by bringing different network statistics to the same 
measurement unit we look at the positional changes in a network over the years. This 
simple descriptive analysis shows top regions in terms of collaboration and may give 
clues about persistence and may even show emergence of new knowledge hubs. Moving 
from the idea of convergence to cohesion needs a panel network analysis where one can 
analyse the impact of regional characteristics on network structure and in turn how 
network structure affects the characteristics of the regions. Thus, finally we present the 
findings of SIENA for the science network and invention network seperately.  
 
4.1. Network Statistics 
 
As seen in Table 5, the FP project network consists of 281 nodes. Various network 
indicators reveal that collaborations between NUTS2 regions have increased over time. 
The distance among nodes (average geodesic distance) decreased between 2011-2019. 
When the entire network is taken into consideration, the distances between NUTS2 
regions in terms of cooperation and information flow, have decreased. In addition, there 
is a slight increase in network density, which shows the total number of actual links in a 
network with respect to the total number of possible links, if all nodes were connected to 
each other. As in density, we observe an increase in the number of links per node (average 
degree) as well. Average betweenness centrality indicates the extent to which a node in 
the network acts as a bridge connecting other nodes, in a way showing the node’s 
importance in the information flow between unconnected nodes. This value is highest in 
2015 and then decreases. This situation shows that relatively less new links were 
established based on these bridging nodes, which demonstrates that the network 
structure started to become more distributed. Closeness centrality measures the average 
shortest distance from each node to the other node. As this value increases, nodes become 
closer to each other. It can be seen that this value is stable throughout the years. 
Eigenvector centrality shows the extent to which a node is connected to other important 
nodes in the network. It’s value remained almost unchanged over the years in the FP 
project network. The last indicator is the clustering coefficient. Clustering coefficient 
focuses on the egocentric networks rather than the entire network, and it shows the 
extent to which alters of a node are connected among themselves. In other words, it is 
calculated as: [the number of links connecting a node’s neighbors] / [the total number of 
possible links among the node’s neighbors]. For instance, assume that A has three 
neighbors: B, C, and D. There are links between B and C as well as B and D. Clustering 
coefficient is 2/3 or 0.66. The clustering coefficient is calculated like overall network 
density, but only using a subset of nodes. The average value of the clustering coefficient, 
calculated separately for each node, tends to increase. This demonstrates that there is a 
tendency for network closure.  
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Table 5: Network statistics - FP project collaborations 
  2011 2013 2015 2017 2019 
Graph Type Undirected Undirected Undirected Undirected Undirected 
Vertices 281 281 281 281 281 
Unique Edges 25287 25509 25297 25899 26616 
Edges With Duplicates 0 0 0 0 0 
Total Edges 25287 25509 25297 25899 26616 
Self-Loops 255 254 255 260 258 
Average Geodesic Distance 1.3543 1.3486 1.3587 1.3388 1.3205 
Graph Density 0.6363 0.6420 0.6366 0.6517 0.6700 
Average Degree 179.9786 181.5587 180.0498 184.3345 189.4377 
Average Betweenness Centrality 49.9253 49.1352 50.8968 47.7616 45.2064 
Average Closeness Centrality 0.0027 0.0027 0.0027 0.0027 0.0028 
Average Eigenvector Centrality 0.0036 0.0036 0.0036 0.0036 0.0036 
Average Clustering Coefficient 0.8389 0.8428 0.8409 0.8371 0.8413 
 
The patent network also consists of 281 nodes as can be seen in Table 6. As there are 
anomalies in 2019 data, the analysis is performed for the years 2011-2017. In terms of 
the variables, there seems to be an increase in collaborations until 2015, and decrease 
afterwards. For example, the distance among nodes (average geodesic distance) falls 
between 2011-2015 and increases in 2017. The density of the network also tends to fall 
after 2015, demonstrating that the patent collaboration links among nodes decrease. 
Besides, a decrease is observed in the number of links per node (average degree) as well. 
Average betweenness centrality peaked in 2015 and then decreased, in line with the 
observation that the geodesic distances between nodes have increased. Closeness 
centrality, eigenvector centrality, and clustering values demonstrate almost no change 
over the years. In summary, this network shows that there is a decrease in patent 
collaborations between NUTS regions, especially after 2015. This pattern is different 
from the FP projects, in which we observed an overall tendency for increase in 
collaborations during the period 2011-2017.  

What are the implications of these preliminary statistics for knowledge convergence and 
cohesion? Firstly, it is possible to observe that, although there are similarities between 
the two networks, there are also divergences, notably after 2015, in the evolution of the 
networks. In the case of FP, regions tend to converge to each other, as the network 
statistics reveal. For example, reduced geodesic distances, higher network density and 
average degrees of nodes, and higher clustering coefficients can be interpreted as signs 
of knowledge convergence. On the other hand, while we observe similar patterns in the 
patent network initially, after 2015, there are signs of loosening of networks. Stated 
differently, geodesic distances between regions increase, network density as well as 
average degrees fall. These signal that the two networks are possibly driven by different 
mechanisms of evolution in time. In section 4.3. below, we further explore these 
mechanisms (especially the discussion of Table 11). 
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Table 6: Network statistics - Patent collaborations 
  2011 2013 2015 2017 2019 

Graph Type Undirected Undirected Undirected Undirected Undirected 

Vertices 281 281 281 281 281 

Unique Edges 3802 3996 3952 3635 1357 

Edges With Duplicates 0 0 0 0 0 

Total Edges 3802 3996 3952 3635 1357 

Self-Loops 216 219 222 222 171 

Average Geodesic Distance 2.0715 2.0621 2.0388 2.1059 2.8248 

Graph Density 0.0912 0.0960 0.0948 0.0868 0.0301 

Average Degree 27.0605 28.4413 28.1281 25.8719 9.6584 

Average Betweenness Centrality 96.9253 96.9359 94.8185 101.8149 123.8505 

Average Closeness Centrality 0.0018 0.0018 0.0018 0.0017 0.0013 

Average Eigenvector Centrality 0.0036 0.0036 0.0036 0.0036 0.0036 

Average Clustering Coefficient 0.3831 0.3904 0.3920 0.3850 0.2868 

 
4.2. Descriptive results 
 
Establishing and maintaining knowledge stock may present advantages to regions. On 
one hand a region may invest in infrastructure and human capital to start accumulating 
knowledge. This effort needs exploration activities either through transferring codified 
knowledge or through involvement in research and innovation networks. The initial 
knowledge stock may further be enhanced by exploitation as well as exploration 
activities. While the initial knowledge stock of a region creates an impetus for exploration 
and exploitation activities (i.e., extended network in terms of links to different regions), 
the position of a region within a network may further enhance its knowledge stock. Thus 
in terms of our descriptive analysis we expect a certain level of persistence for some 
regions that are bigger in size and engaged in the network at an earlier time.  
 
But it could also be the case that some regions, through the mechanisms discussed above, 
are successful in creating and maintaining the knowledge stock even though they had 
certain initial disadvantages compared to other regions that for long have fueled research 
and innovation activities. Size could create a disadvantage, initial infrastructure and 
human capital or geography may create certain disadvantages. But still some peripheral 
regions (either within a country or throughout Europe) have developed in terms of 
knowledge stock compared to others. In our descriptive analysis we also look for 
emerging knowledge hubs as well as persistent knowledge hubs. Our assumption is that 
through collaboration activities by both participating in FPs and/or inventor 
collaboration in patents, regions build knowledge stock. However the position of a region 
within a collaboration network and the change of its position through time determines 
(the pace of) knowledge convergence. 
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Figure 3: Correlation of FP project collaboration and patent collaboration 
percentiles in 2017 

 
 
In section 4.1 we already discussed descriptive network statistics and what they mean in 
terms of knowledge convergence and cohesion. However, to compare a region's position 
within a changing network structure we need to bring network statistics in a common 
measurement unit. For instance, Oberbayern (DE21) has different centrality statistics 
over the years; however by just looking at the numbers we cannot analyse Oberbayern’s 
position in a network over the years. In each period (2011 to 2019) network statistics are 
computed over a different network where the number of nodes and the links between 
them are different. To bring centrality statistics to a common measurement unit we used 
each region’s centrality statistics (degree, betweenness, closeness and eigenvector 
centrality) and computed percentile ranks for centrality statistics in all periods (2011 to 
2019 every two years). Thus a percentile rank (say 95th) in degree centrality in 2011 
shows the position of a region in the network of 2011 according to degree centrality. The 
rank of a region through time is comparable. For instance Oberbayern (DE21) is top 5 
percentile region in both FP project collaborations and patent collaborations in all five 
periods from 2011 to 2019 which shows persistence. Even though the network structure 
is different in different periods, Oberbayern is always a top-5 percentile region 
(according to network degree). But for instance even Wien (AT13) is not in the top-5 
percentile list according to degree centrality, its percentile rank ranges from 93 to 97 over 
the years for FP project collaborations and from 83 to 89 for patent collaborations also 
displaying persistence. Figure 3 shows the correlation between FP project collaboration 
and patent collaboration weighted by the size of the region. The correlation is 0.66 and is 
significant at the 1% level. Larger regions tend to be good both in terms of FP projects 
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and patent collaborations. The northwest of the figure displays regions that are more 
successful in collaboration in science and the southwest of the figure displays regions that 
are good in participating in invention networks but are poor in participating in scientific 
networks.   
 
Table 7: Top 5 percentile NUTS 2 regions (according to network degree) - FP 
project collaborations vs. patent collaborations 

FP project collaboration Patent collaboration 
2011 2013 2015 2017 2019 2011 2013 2015 2017 2019 
ITI4    ITI4   ES30   ES30   FR10   DE21 DE21 FR10 DE21 DE21 
FR10    FR10   FR10   BE10   ES30   DE71 FR10 DE21 DE11 DEA1 
BE10   DE21   ITI4   FR10   BE10   DEA2 DE71 DE71 DEA2 DE71 
ES30   ES30   BE10   ITC4   ITI4   FR10 DEA2 DEA1 DE71 DE11 
EL30   UKI3   DE21   UKI3   NL33   DE12 DE12 DEA2 DE12 DE12 
ITC4    ES51   UKI3   NL33   ITC4   DE11 DEA1 DE12 FR10 DEA2 
UKI3   BE10   ES51   ES51   ES51   DEA1 DE11 CH04 DEA1 DE30 
DE21   NL33   ITC4   ITI4   EL30   DEB3 CH01 CH03 DE14 DE25 
ES51   ITC4   AT13   AT13   UKI3   CH04 DE30 DE11 CH03 FR10 
NL33   EL30   EL30   EL30   ITH5   DE30 UKJ1 UKJ1 ITC4 CH04 
DK01   SE11   NL33   PT17   PT17   ITC4 DEB3 DE13 DEB3 DE13 
DEA2   NL22   DK01   FI1B   DE21   DE25 CH04 DEB3 CH04 DEA3 
 FI1B   FI1B   DE21   AT13   DE13 DE13 UKH1   
 DEA2   DEA2   FI1B         
 UKG3    DEA2         
        ITI1             

 
Table 7 lists the top 5 percentile NUTS 2 regions according to the network degree where 
the left panel of the table lists regions according to collaboration in FP projects and the 
right panel lists regions according to patent collaboration. Network degree is the number 
of links of a region to other regions reflecting opportunity. Once those links are formed 
there is a tendency of collaboration to continue and even deepen if the relation between 
regions builds trust. Several observations can be made from Table 7. First, patent 
collaboration is more homogenous. Most top-5 percentile regions are from Germany. 
Regions from Switzerland, United Kingdom (UK), France and Italy are also present in 
different periods. However, the list of top 5 percentile regions in FP project collaborations 
is more heterogeneous. There are regions from 13 different countries. A second 
observation is that most regions that are listed top-5 in 2011 are all the time at the top-5 
percentile list. 10 out of 12 regions that are considered to be top-5 region in FP project 
collaboration are in the list for all years. When we look at patent collaboration we also 
see a similar pattern. 8 out of 13 regions are always a top-5 percentile region. 6 regions 
of Germany are always at the top-5 percentile list in patent collaboration. These regions 
are mostly located at the core of Europe, are populated (i.e., large human capital) and 
known to be investors in research and innovation early on which signifies the importance 
of starting levels. Starting level knowledge, infrastructure, human capital and geography 
may perhaps have given certain advantages to these regions so that they have a persistent 
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network position. Most of the regions listed in the left panel are in 10-core countries that 
constituted the European Economic Community (EEC) and had a chance to participate in 
the first round of FP between 1984-1987.5 It could be the case that such links in project 
collaborations are carried to collaboration in patents later on, which could also explain 
why there is persistence in top-5 percentile regions according to network degree.  
 
Figure 4: Depicting network degree of FP project and patent collaborations in 
European NUTS2 regions  

 
 
Figure 4 visualizes Table 7. Comparing panel A and panel B it is obvious that patent 
collaboration is a EU-core phenomenon. Darker red regions are the ones that have a high 
degree centrality where such regions are concentrated in south Germany, Switzerland 
and North of Italy. This pattern changes slightly over the years (2017 compared to 2011). 
In 2017 we also see regions from Spain, Finland and Sweden that are peripheral to 
Europe. When we look at Panel A, the FP project collaborations, the core and the 

 
5 EEC consisted of Belgium (BE), Denmark (DK), France (FR), Germany (DE), Greece (EL), Ireland (IE), 
Italy (IT), Luxembourg (LU), Netherlands (NL) and the United Kingdom (UK). 
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periphery are not as sharp as in Panel B. This could be because FPs already provide a 
platform for regions to collaborate and that one project collaboration may even connect 
10 different regions. Tables 5 and 6 also show that degree centrality is much higher in FP 
project collaborations compared to patent collaborations. Comparing 2011 to 2019 in 
panel A of Figure 4 one can see peripheral regions that become better connected over the 
years. However, looking from the “number of connections” angle, degree centrality 
analysis tells us a story of persistence of top players.    
 
Table 8 presents top-5 percentile regions according to betweenness centrality. This 
measure is affected by the network structure and the position of the regions that a 
particular region is connected to. Thus it shows the importance of a region in knowledge 
exchange within a network. High scores of betweenness centrality means that a region 
through its connections may act as a hub that connects unconnected regions. This 
position may help such regions to accumulate and utilize knowledge better than the 
others. Table 8 shows that the top 5 percentile region list according to betweenness 
centrality is much more heterogeneous compared to degree centrality. Regions listed in 
Table 7 are mostly present in Table 8 strengthening the discussion on persistence but we 
also see peripheral regions in the top-5 list such as Budapest (HU11), Warszawski 
stołeczny (PL91), Attica (EL30), Área Metropolitana de Lisboa (PT17) and Basque 
Community (ES51). Thus we can say that regarding the importance of positions of regions 
in a knowledge exchange network, persistence is a pattern but less pronounced and there 
are signs of emerging knowledge hubs at the periphery which may be taken as a sign of 
knowledge convergence. 
 
Table 8: Top 5 percentile NUTS 2 regions (according to network betweenness) - 
FP project collaborations vs. patent collaborations 

FP project collaboration Patent collaboration 
2011 2013 2015 2017 2019 2011 2013 2015 2017 2019 
ITI4 ES30 ES30 ES30 FR10 DE21   DE21   DE21   DE21   DE11   
EL30 BE10 FR10 BE10 ES30 DE71   FR10   FR10   DE11   DE21   
FR10 FR10 ITI4 DEA2 NL33 ITC4   DEA2   DEA1   DE71   DEA1   
BE10 ITI4 BE10 FR10 BE10 FR10   DE11   CH04   FR10   FR10   
ES30 DE21 ES51 NL33 ITC4 DE11   ES30   DE71   DEA2   DE12   
DE21 AT13 DE21 ITI4 UKI3 DE60   DE12   ITC4   DE12   ES51   
UKI3 ES51 UKI3 DE21 ITI4 CH01   ITC4   UKH1   DEA1   DE71   
ITC3 UKI3 ITC4 UKI3 FI1B DE12   DE71   DE11   CH04   ITC4   
ITC4 EL30 NL33 AT13 EL30 DEA2   DEB3   DEA2   ITC4   ITH5   
ITI1 FI1B DEA2 ITC4 ITH5 ITH5   DEA1   ES30   DE25   CH03   
ES51 NL33 EL30 ES51 ES51 DEB3   CH01   DE12   ES51   NL41   
NL33 ITH5 AT13 PT17 PT17 ES30   DEA5   DEB3   UKJ1   CH04   
ITC1 ITC4 DE30 NL22 AT13 BE24   DE25   ES51   UKH1    
NL32 DEA2 NL22 EL30 DE21       
FI1B ITC1 HU11 PL91 ES21       
DK01 HU11 DK01 FI1B DEA2           
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Comparing Figure 5 Panel B to Panel B of Figure 4 we see that in patent collaboration a 
core still exists but there are also regions from Spain, UK, Finland, Sweden and Greece 
that are similarly positioned in the patent collaboration network. Comparing 2011 to 
2017 in Figure 5 Panel B one can observe that over the years some peripheral regions 
have increased their importance in the network. The existence of the core reflects 
persistence and the increased heterogeneity and emergent knowledge hubs in the 
periphery may reflect knowledge convergence. Figure 5 Panel A supports such findings. 
FP collaboration data is richer (includes more NUTS 2 regions) compared to patent 
collaborations and the emergence of peripheral knowledge hubs in Poland, Spain, 
Portugal, Ireland and Greece can better be observed.     
 
This set of descriptive analysis shows that knowledge in Europe is produced in the core 
and there is persistence over the years. It may be difficult to tap into such a network but 
the findings also show that some peripheral regions may be considered as emerging 
knowledge hubs which may be taken as a sign of convergence.  
 
Figure 5: Depicting network betweenness of FP project and patent collaborations 
in European NUTS2 regions 
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The above descriptive analysis can be extended in two ways. First, it could be the case 
that core or big cities of peripheral countries are better positioned in the knowledge 
exchange network but there is no overall pattern of knowledge convergence. To 
investigate this, simple scatter plots of difference of percentile ranks between 2019 and 
2011 (for patent collaboration 2017 and 2011) and initial level of percentile rank can be 
used. Second, we can benefit from empirical economic growth literature where the 
variations in the change of Gross Domestic Product (GDP) are explained with a set of 
control variables and the initial level of GDP. A negative coefficient of initial level of GDP 
is taken as a sign of economic convergence. This idea can be utilized to assess whether 
there is knowledge convergence.  
 
Figure 6: Knowledge convergence, FP project collaborations 2011-2019 vs. patent 
collaborations 2011-2017 

 
 
Figure 6 depicts simple correlations of initial levels and changes over for 2011-2019 FP 
project collaborations and for 2011-2017 patent collaborations. Panel A shows the 
scatter plot for degree centrality and betweenness centrality using FP project 
collaborations and Panel B shows the scatter plots for patent collaborations. To produce 
these figures, first percentile ranks of centrality values are computed. Higher percentiles 
represent more linkages (degree) and better position (betweenness) in the network. The 
difference of percentile ranks over a period (e.g., degree percentile rank 2019 - degree 
percentile rank 2011) may give clues about how regional position changes over the years. 
For instance, if the degree percentile rank is 50 in 2011 and 80 in 2019 it means that this 
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particular region is better positioned in the network over time. The correlation of this 
change indicator and its initial level for different centrality measures ranges from -0.18 
to -0.25 all of which are significant at the 1% level of significance. Thus the negative 
correlations depicted in Figure 6 are all statistically significant. Figure 6 also highlights 
the persistence story as can be understood from little variation after the 90th percentile 
(x axis) or similarly falling variations as one moves to higher percentiles. Both patent and 
FP project collaborations lead to knowledge accumulation. When regions enhance 
collaborations they not only occupy a better position in the knowledge network but also 
accumulate knowledge. Figure 6 shows that, on average, regions that are relatively poor 
in knowledge are catching-up regions that are rich in knowledge (indicating 
convergence). The level of knowledge in a region is approximated by its position in the 
knowledge network that is either based on FP project collaborations or patent 
collaborations.     
 
Figure 7: Added variable plots of degree and betweenness in 2011. FP project 
collaborations 2011-2019 vs. patent collaborations 2011-2017 

 
 
Figure 6 could be taken a step further with an OLS estimation where the variations in the 
difference in centrality rank over a period is explained by initial centrality rank, initial log 
population to control size effect, initial patent applications to control for initial 
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knowledge stock and country fixed effects. The added variable plots of initial centrality 
rank using FP collaboration and patent collaboration data are presented in Figure 7. The 
negative coefficient of the difference of centrality rank 2019-2011 can be interpreted as 
evidence for knowledge convergence (similar to OLS regression of GDP growth on initial 
GDP and a set of controls). Panel A of Figure 7 shows the added variable plots of degree 
centrality and betweenness centrality that come from the FP project collaboration 
network. As can be seen, both coefficients are negative indicating convergence. In a 
similar manner, Panel B shows the added variable plots of degree centrality and 
betweenness centrality that come from patent collaborations. Compared to the FP project 
network, convergence has a stronger pattern in the patent network. In summary, 
knowledge exchanges within both the FP project and the patent network display a 
convergence pattern where regions that are less endowed with knowledge tend to catch 
up with knowledge-rich regions. While this finding is promising, it is still a correlation, it 
does not consider the impact of changes in the network structure and does not say much 
about cohesion.  
 
4.3. SIENA results 
 
SIENA results on FP project collaborations and patent collaborations are displayed in 
Table 9 and 10, respectively. Each table presents two panels where the top panel 
(network dynamics) shows the impact of regional characteristics (innovation and trust) 
network indicators (density, transitivity, # of links, strong tie) and control variables 
(distance to control for geography and employment in science and technology to control 
for size) on the network structure. The bottom panel shows the impact of network 
structure on regional characteristics. We expect network structure to affect regional 
characteristics to talk about cohesion. The analysis includes a total of 281 NUTS 2 regions. 
Jaccard coefficient of the simulation results in Table 9 shows the similarity between 
waves, and a value of 0.80 is sufficient, which is higher than the required level of 0.3. 

Considering FP projects (Table 9), there are costs and benefits of establishing links to 
other regions. For instance, while a project partnership can bring new information and 
new network opportunities to the region; the burden of costs required to realize the 
project may be higher than the benefits. Density (outdegree) value is found to be negative 
and significant, meaning that nodes do not link randomly but are selective. This 
demonstrates that establishing and managing ties in FP projects are costly, as expected. 

The results also indicate a significant coefficient for transitivity in networks. In other 
words, the probability of two regions forming a collaboration with each other depends 
on commonly known third parties, which has been shown to be the case in many 
knowledge networks in the literature (Gulati, 1999). Transitivity value is found to be 
positive and significant which shows that the nodes have a tendency towards clustering. 
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Table 9: Siena results of FP project collaborations 2011-2019 
Network dynamics: the impact of regional characteristics on network structure 
  coeff.  s.e. interpretation 
network (period 1) 4.905 0.388 On average each region is selected as a partner 4.9 times 

between p1 and p2. 
network (period 2) 6.291 0.646 See the above interpretation. 
network (period 3) 6.245 0.509 See the above interpretation. 
network (period 4) 5.067 0.353 See the above interpretation. 
Density (Outdegree) -7.609*** 0.202 Nodes do not link randomly, they are selective. Establishing 

and managing ties are costly. 
Transitivity 2.420*** 0.098 Tendency towards transitivity. Evidence of clustering. 
# of links (node) 0.033*** 0.001 The more links a node has the more it sets up. 
Strong tie 2.383*** 0.078 Previous collaboration drives further collaboration. 
Distance -0.096** 0.039 Distance between regions has a negative effect on 

collaboration. 
Innovation ego 0.0006 0.052 Being highly innovative has no significant effect on 

collaboration. 
Innovation similarity 0.313*** 0.105 Collaboration tends to be high among regions with similar 

innovation levels. 
Trust ego 0.187** 0.075 Being a high trust region significantly affects collaboration. 
Trust similarity -0.342 0.259 No significant effect of collaboration among regions with 

similar levels of general trust. 
Employment ego 0.113** 0.050 Being rich in terms of human resources in S&T significantly 

affects collaboration. 
Employment similarity 0.024 0.113 No significant effect of collaboration among regions with 

similar levels of Human Resources in S&T 
Behaviour dynamics: the impact of network structure on regional characteristics 
rate (period 1, innov.) 0.013 0.009 Indicates the average number of change opportunities 

regarding increasing innovation level. 
rate (period 2, innov.) 0.374 0.057 See the above interpretation. 
rate (period 3, innov.) 0.696 0.081 See the above interpretation. 
rate (period 4, innov.) 0.490 0.067 See the above interpretation. 
Innov. lineary shape -0.389** 0.198 There is steady decrease in innovation level over time  
Innov. quadratic shape 0.050 0.050 No statistically significant effect. 
Innov. degree 0.009*** 0.004 The more active the region is (i.e., collaboration, links) The 

higher its innovation level. 
Innov. average alter 0.415 0.302 No effect of neighbours on the region. 
rate (period 1, trust) 0.709 0.113 Indicates the average number of change opportunities 

regarding increasing general trust level. 
rate (period 2, trust) 0.999 0.158 See the above interpretation. 
rate (period 3, trust) 1.397 0.206 See the above interpretation. 
rate (period 4, trust) 1.209 0.163 See the above interpretation. 
trust linear shape 0.040 0.075 No statistically significant effect. 
trust quadratic shape -0.378*** 0.065 Negative feedback indicates a self-correcting mechanism. 

The push for increasing trust for regions that already have 
high trust becomes smaller.  

trust degree 0.002 0.003 Region’s activeness in collaboration has no impact on the 
region. 

trust average alter 0.675 0.524 No effect of neighbours on the region. 
Note: The network and rate variables indicate expected frequencies, between successive periods, with 
which nodes (regions) get the opportunity to change a network tie. Though we report the standard errors 
of these variables, testing that they are zero is meaningless because if the coefficients are zero there is no 
change in the network at all (Snijders et al., 2010).  
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One of the activities conducted in all FP projects is related to the visibility of regions. 
Visibility activities are carried out to promote European Commission’s support and to 
increase the visibility of the activities performed and results obtained throughout a 
project. Such promotions render project partners (“project partner” is used as a generic 
term without discriminating between coordinator and partner) visible to the 
institutions/agencies outside the project. As a result, partners that are involved in many 
projects can be more visible, and attract more partners in the future. In the literature, 
such a “rich get richer” effect has been studied under the concept of preferential 
attachment (Barabasi and Albert, 1999). The number of prior links that a region has is a 
factor facilitating its establishing links later on. Number of links (node) value is found to 
be positive and significant; in other words, the number of links a node has makes a 
positive impact on establishing new links. 

A collaboration between two regions in a project creates a potential to establish 
collaborations in future projects. Through collaboration, parties get to know each other, 
develop a common language, which facilitates their working together in the subsequent 
projects. The strength of ties not only supports the quality of information to be 
transferred between nodes, but also affects the status of the relationship between the 
parties. Repeated interactions lead to the strengthening of ties in between. This repetition 
will also act as a factor that influences parties to naturally prefer each other in other 
projects. Strong tie value is found to be positive and significant, meaning that trust is a 
factor that has a positive impact on establishing links. 

Geographical distance between two regions is another factor that may influence 
networks. Project collaborations between regions that are distant may reflect differences 
in cultural attributes, priorities and practices of business conduct. For example, a 
Mediterranean and a Baltic coastal region may drastically differ from each other in terms 
of project related practices and institutions.  Distant geographies may also have different 
languages which may act as a barrier. In addition, distance may make it more difficult to 
collaborate on a more practical level. Such differences led by geographic distance are 
expected to have a negative impact on collaboration. Indeed, the results reveal that the 
coefficient of geographical distance value is negative and statistically significant which 
indicates that geographic distance has a negative impact on collaboration.  

A region with a high innovation level demonstrates that it is successful in producing new 
knowledge, as well as absorbing incoming knowledge. It is expected that a high 
innovation level would be an attractive factor for establishing links; however, this 
hypothesis is not verified. While it could probably be attractive for a low innovation 
region to link with a high innovation region, the opposite may not hold (i.e. innovation 
ego value is positive but insignificant). On the other hand, the results reveal the significant 
positive effect of innovation similarity on network structure. Stated differently, regions 
with similar innovation levels are more likely to establish links with each other.  
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In terms of the trust variable, results indicate a positive and significant coefficient. In 
other words, the regions with high degrees of trust are engaged in more collaborations. 
The measure of trust here can be taken as an indicator of openness of a region to 
collaborations. The similarity in trust values between two regions has no significant 
impact on networks, according to the results.  

Another variable that is included is the human capital of regions. Regions’ having well-
trained human resources in Science and Technology (S&T) is critical both in their 
production of new knowledge and learning capabilities. As the quality and number of 
human resources of the regions increases, they would naturally become more attractive 
for other regions. Indeed employment ego value was found to be positive and significant. 
On the other hand, although a positive tendency is observed towards establishing links 
with those regions with a similar level of human resources in S&T the results are 
insignificant. 

The impacts of innovation and trust, which were defined as behaviours, as well as node 
characteristics on the shaping of the FP project network are also examined. First, the 
linear and quadratic shape of the objective function is checked. Innovation linear shape 
is found to be negative and significant, which points at the gradual decrease in the 
innovation value from the first wave to the last wave. Quadratic shape, on the other hand, 
show that the node with a high innovation value in period 1 has a higher innovation value 
in period 2; however, the results are insignificant. Two indicators related to innovation 
as behaviour are innovation degree and innovation average alter. Innovation degree is 
positive and significant, which means that NUTS regions with a higher degree (more 
“active” actors) have a stronger tendency toward high innovation, thus being in the 
network and collaborating tend to increase innovation level. On the other hand, despite 
a positive innovation average alter coefficient, which shows the tendency of nodes to 
reach to an innovation level similar to the nodes they established links with (influence) 
the results are insignificant. The story is a bit different for the second behaviour variable, 
generalized trust. Trust linear shape is statistically insignificant. Quadratic shape, on the 
other hand, is significant and shows that those with a lower trust value in 2011 have a 
higher trust value in 2019.  
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Table 10: Siena results of Patent collaborations (inventor network) 2011-2017 
Network dynamics: the impact of regional characteristics on network structure 
  coeff. s.e. interpretation  
network (period 1) 7.918*** 0.787 On average each region is selected as a partner 7.9 times 

between p1 and p2. 
network (period 2) 7.018*** 0.698 See the above interpretation. 
network (period 3) 7.321*** 0.767 See the above interpretation. 

Density -4.434*** 0.197 Nodes do not link randomly, they are selective. Establishing 
and managing ties are costly. 

Transitivity 1.387*** 0.082 Tendency towards transitivity. Evidence of clustering. 

# of links (node) -0.031*** 0.009 The more links a node has the less it sets up. 

Strong tie 1.174*** 0.073 Previous collaboration drives further collaboration. 

Distance -0.862*** 0.135 Distance between regions has a negative effect on 
collaboration. 

Innovation ego -0.001 0.063 Being highly innovative has no significant effect on 
collaboration. 

Innovation similarity 0.627** 0.294 Collaboration in patents tend to be high among regions 
with similar innovation levels. 

Trust ego -0.051 0.123 Being a high trust region has no significant effect on 
collaboration. 

Trust similarity 2.951*** 1.005 Collaboration tends to be high among regions with similar 
trust levels. 

Employment ego 0.257*** 0.093 Being rich in terms of human resources in S&T significantly 
affects collaboration. 

Employment similarity 0.057 0.166 No significant effect of collaboration among regions with 
similar levels of human resources in S&T 

Behaviour dynamics: the impact of network structure on regional characteristics 
rate (period 1, innov.) 0.012 0.009 Indicates the average number of change opportunities 

regarding increasing innovation level. 
rate (period 2, innov.) 0.363 0.074 See the above interpretation. 
rate (period 3, innov.) 0.673 0.099 See the above interpretation. 
Innov. linear shape -0.414 0.387 No statistically significant effect.  
Innov. quadratic shape -0.243 0.255 No statistically significant effect. 
Innov. degree -0.053 0.060 Own activity of the region is (i.e., collaboration, links) has 

no effect on innovation level.  
Innov. average alter 1.545 1.153 No effect of neighbours on the region. 
rate (period 1, trust) 0.963 0.214 Indicates the average number of change opportunities 

regarding increasing innovation level. 
rate (period 2, trust) 1.310 0.256 See the above interpretation. 
rate (period 3, trust) 1.447 0.284 See the above interpretation. 
trust linear shape 0.321 0.302 No statistically significant effect. 
trust quadratic shape -1.701* 0.946 Negative feedback indicates a self-correcting mechanism. 

The push for increasing trust for regions that already have 
high trust becomes smaller.  

trust degree 0.033 0.029 Own activity of the region is (i.e., collaboration, links) has 
no effect on trust.  

trust average alter 5.196 1.500 No effect of neighbours on the region. 
Note: The network and rate variables indicate expected frequencies, between successive periods, with 
which nodes (regions) get the opportunity to change a network tie. Though we report the standard errors 
of these variables, testing that they are zero is meaningless because if the coefficients are zero there is no 
change in the network at all (Snijders et al., 2010).  
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Patent network (Table 10) displays similarities to FP network (Table 9) in certain 
aspects. Even though significance levels differ, density, transitivity, tie strength, distance, 
innovation ego and innovation similarity, employment ego, and employment similarity 
variables have similar effects in both networks. As in the FP networks, nodes behave 
selectively rather than randomly when establishing links (negative and significant 
coefficient of density). Transitivity coefficient is also positive and significant for patent 
network, which indicates that the likelihood of collaboration between two regions 
increases with common partners. However, as different from FP networks, we do not 
detect a preferential attachment mechanism; on the contrary the negative coefficient of 
number of links indicates that the more links a region has, the less links it attracts. This 
might be because of a certain saturation level in the total number of patent collaborations 
in a region. Likelihood of collaboration increases with repeated ties between two regions, 
as revealed by the positive and significant coefficient of strong tie. On the other hand, the 
tendency to cooperate decreases with geographical distance between two regions as 
indicated by the negative and significant coefficient of distance. Rather than the 
innovation level of the node, the similarity of the innovation levels between two regions 
(positive and significant coefficient of innovation similarity) impacts collaboration. High 
levels of employment in S&T shape the network (i.e., establishing or terminating links). 
Interestingly, the effect of the trust variable is different from the FP network analysis. The 
results indicate a significant positive effect on networks of similarity in trust levels 
between two regions. In other words, regions with high trust values tend to collaborate 
more with high trust regions.  

When behaviour variables are analyzed, innovation value decreases over time from 
period 1 to period 3. However results are insignificant, in other words innovation is 
linear-shaped. Although the value of the quadratic shape is found to be insignificant; over 
time the value of the nodes with high innovation value decreases, while the value of those 
with low innovation values increases. In other words, the innovation value does not 
reinforce itself. In the patent network, neither innovation degree nor innovation average 
alter values are found to be significant. That is, NUTS with a higher degree (more ‘active’ 
actors) do not have the tendency to reach a higher innovation level; nodes, also, do not 
tend to reach innovation levels similar to the nodes they established links with (thus no 
influence effect as well). Regarding trust, while linear shape is insignificant, quadratic 
shape coefficient is significant; albeit with a relatively low significance level. Over time, 
the value of those with high trust values decreases while that of nodes with lower values 
increase. Thus there is a self-correcting mechanism. Trust degree and trust average alter 
are insignificant in the patent network just as in the FP project network.  

Comparing Table 9 and 10 we can reach two conclusions regarding knowledge cohesion: 
(i) it seems that both in the patent and FP project network, regions tend to collaborate 
with regions that are similar to themselves. In terms of network structure research and 
invention networks resemble and there is more evidence toward convergence (ii) the 
impact of network structure on regional characteristics is mostly statistically 



32 

insignificant especially in the patent network. We take these as evidence against 
knowledge cohesion.    

These results reveal some differences between FP project and patent networks in terms 
of the mechanisms that drive their evolution. Above (section 4.1 and 4.2) it is explained 
that we observe some convergence between regions in FP project network. These results 
are better explained when we analyze SIENA output. It seems that there are self 
reinforcing mechanisms at work in FP project network; strong network transitivity and 
tendency towards closure, strong influence of strong ties between regions on network 
evolution are some of the indicators of this mechanism. On the other hand, comparison 
between the two networks reveals that network evolution in patent network is more 
sensitive to some of the variables, compared to FP project network. An in depth 
exploration of these variables will enable gaining some insights.  

Firstly, transitivity mechanism in networks is nearly two times higher in FP project 
networks than in patent network.6 Secondly, patent networks are more sensitive to 
distance between regions. Geographically proximate regions are significantly more likely 
to collaborate as compared to FP project networks. Third, the effect of strong ties on 
network evolution is stronger in FP project networks, compared to patent networks. This 
means that repeated collaborations between regions have a higher role in driving further 
collaboration in FP project networks. Fourth, the innovation similarity between two 
regions plays a more important role in patent networks, compared to FP project 
networks, as revealed by the value of the coefficients of innovation similarity variable. 
Finally, regional human capital plays a more important role in patent networks than FP 
project networks.  

These factors imply that patent network evolution is more sensitive to regional attributes 
than FP project network: distance between regions, employment levels, and innovation 
similarity between regions. At the same time, patent networks are less sensitive to 
variables related with the past networks than FP project networks: common 
collaboration partners (transitivity), effect of past collaborations and density have 
comparably less role in network evolution in patent networks. These results may indicate 
that patent collaborations are more sensitive to market-based changes in the 
environment. In other words, for patent networks, environmental or regional 
characteristics are more important than collaborations in the past. On the contrary for FP 
project network, past networks impose a stronger self reinforcing mechanism, as 
revealed by the strong role of past networks on the evolution of FP networks.  

In terms of knowledge convergence and cohesion, the results indicate that in both cases 
there are signs of convergence. But for patent networks, there seems to be stronger 
convergence between similar regions which are closer to each other physically, which can 

 
6 In the RSIENA Manual, Ripley et al (2020), section 8.5 (p. 100) discusses comparison and testing between 
two different networks and shows that if the network model and the observations are the same coefficients 
of two different networks can be compared.  
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increase the discrepancies between all the regions in the long run. This possible 
fragmentation is likely to inhibit knowledge cohesion in the long run. For the FP project 
network, on the other hand, the strong role of past networks on network evolution 
prepares a more suitable ground for knowledge cohesion between regions. However in 
the period we analyse we do not find strong evidence for cohesion.  

Table 11: Comparison of two networks’ evolution mechanisms 
What drives network evolution? High effect Low effect 

Regional attributes 
● Distance between regions, 
● Human capital 
● Innovation level similarity between regions 

  
Patent networks 

  
FP networks 

Past networks 
● Strength of ties 
● Density 
● Transitivity 

  
FP networks 

  
Patent networks 

 
5. Conclusion  
 
In this research we investigate knowledge convergence and knowledge cohesion in the 
EU by analysing FP project collaborations and patent inventor collaborations over the 
2011-2019 period using network analysis, but especially SIENA that allows to analyse the 
impact of network structure on regional characteristics. Our results can be summarized 
in three steps. 
 
First, looking at the SNA results there are similarities in the evolution of networks 
between the science and invention networks as well as divergences. In the case of science 
networks (FP project) regions tend to converge to each other, as the network statistics 
reveal. Reduced geodesic distances, higher network density and average degrees of 
nodes, and higher clustering coefficients can be interpreted as signs of knowledge 
convergence. These findings reveal that peripheral regions are increasingly connecting 
to the core through project collaborations which we assume to result in knowledge 
accumulation in the periphery to a certain extent. While we observe similar patterns in 
the patent invention networks initially, there are signs of loosening of networks after 
2015. This finding may mean that the two networks are possibly driven by different 
mechanisms of evolution in time. In summary, our results contribute to the collaboration-
induced knowledge diffusion literature, specifically Balland, Boschma and Ravet (2019). 
We extend their findings at the country level to the NUTS2 regional level. We also provide 
a first analysis of knowledge convergence as conceptualized in section 2. 
 
Second, looking at the descriptive analysis using degree centrality and betweenness 
centrality we find that although there is strong persistence among the knowledge hubs in 
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the core (i.e., top knowledge-rich regions in 2011 are still knowledge-rich in 2019) there 
is a certain degree of catching-up. A simple OLS estimation shows that even after 
controlling for size, initial knowledge stock and country fixed effects, there is a negative 
correlation between initial network statistics (the level) and the difference over the 
2011-2019 period indicating catch-up. Especially in terms of the importance of the 
position of regions in the information exchange (i.e., betweenness centrality) we observe 
that over the years, some peripheral regions of core countries such as Germany and 
capital cities and/or large cities of peripheral countries tend to obtain a better position 
in the FP project network. For instance, the diversity in top 5 percentile regions according 
to network degree and betweenness increases in research networks but is fairly stable in 
patent networks. These findings suggest that there may be a certain degree of knowledge 
convergence among the NUTS2 regions of the EU over the 2011-2019 period.       
 
Finally, to analyse the existence of knowledge cohesion we utilized SIENA to see what 
factors affect the evolution of science and invention networks and whether structural 
changes in the network affect regional characteristics. Science network and invention 
network display similarities in many aspects. Regions behave selectively when 
establishing links, the likelihood of collaboration increases with common partners and 
with repeated ties between two regions. We also find that the tendency to cooperate 
decreases with geographical distance. Such findings signal convergence. We further find 
that in both the science and invention networks regions tend to collaborate with regions 
that are similar to themselves in terms of innovation level and the network structure do 
not have statistically significant effects on regional characteristics. These findings led us 
to argue that collaborations in science and invention networks tend to form knowledge 
convergence but not knowledge cohesion.  
 
We contribute to the literature by first suggesting a rather novel way to investigate (or 
measure) cohesion. To our knowledge this research is one of the first in economics and 
management studies that utilized SIENA. Second, we strictly differentiate between 
knowledge convergence and knowledge cohesion by conceptualizing knowledge 
cohesion. For instance, to investigate economic cohesion researchers mostly use 
econometrics and provide analysis of changes in economic outcome indicators such as 
GDP (e.g., Sala-i-Martin, 1996; Ederveen, de Groot and Nahuis, 2006; Becker, Egger and 
Ehrlich, 2010; Pellegrini et al., 2013; Fiaschi, Lavezzi and Parenti, 2018). In essence, such 
methods and measurement provide evidence for convergence but not for cohesion. Third, 
we used two different data sources and analysed science and invention networks 
separately. Reaching similar results in two different networks increase the robustness of 
our findings.    
 
This research has several limitations that could be improved in future research. One may 
argue that a 10-year period is too short to analyse knowledge cohesion, thus our main 
finding that there is knowledge convergence but not cohesion among regions may be 
expected. While we sympathise with this idea, data availability at the regional level 
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(innovation, trust, employment) was the sole reason why we base the analysis on the 
2011-2019 period. Unfortunately, the regional innovation scoreboard data is only 
available from 2011 onwards. Data availability is a problem especially when the unit of 
analysis is NUTS2 regions. The analysis period could be extended by selecting a different 
set of regional indicators, for instance using GDP instead of innovation. Another problem 
in our analysis is we cannot form a directed network. Due to the nature of data it is not 
possible to know the direction of knowledge transfer but apart from that in section 2 we 
argue that even though there are knowledge stock differences between regions, both 
regions can learn and obtain new knowledge from a collaboration. Finally, in PATSTAT 
data, matching address information to NUTS2 codes was a labour intensive cumbersome 
task. The better this is done the more data will be available.    
 
5.1. Policy implications 

 
In this sub-section, we will discuss the possible policy implications of the results obtained 
in the project. However, in order to discuss them, we need a policy framework in the 
context of EU policies with regard to the scope of the data used. This framework is 
provided by the evolution of EU cohesion policy and a relatively younger policy tool of 
smart specialization. Thus, we first provide a snapshot on these issues and link this 
discussion with the findings of our research. This study is an attempt to bridge the 
repercussions of EU cohesion policy with the observed data and some stylized facts. 
Although our results find evidence in favor of convergence, regions have an inclination to 
collaborate with regions that are similar to themselves in terms of innovation level and 
general trust. This finding especially questions the success of longstanding EU cohesion 
policy.  
 
Policy aims and tools to reach the targets of any policy prescription can be observed at 
various levels of abstraction and implementation. Nowadays, a multi-dimensional 
approach in designing public policies especially in the era of rising complexity in inter- 
and intra-organizational relations seems to be necessary at regional, national and 
supranational levels. A failure to integrate this multi-dimensional insight in policy 
prescriptions would not only fail to solve the existing problems but also deepens them. A 
multi-dimensional approach helps decision-makers in explaining the embedded 
complexity and overcoming barriers in designing successful public policies. The nested 
relations at each dimension should be examined and the feedback loops are carefully 
defined for the evolution of policies and co-evolution of the policy environment. 
  
European Union (EU) cohesion policy is a cross-cutting arena including a complex web of 
relations. It is one of the most important policies of the EU and historically one of the most 
financially significant with its considerable share of the EU budget. In 2013, we observed 
a milestone with a set of significant changes by building a new policy direction and in 
conformity with the motto of the Europe 2020 strategy for smart, sustainable and 
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inclusive growth. This date almost perfectly coincides with our sample of observations in 
the analysis of this paper. 
 
In the context of EU policy making, EU’s growth strategy, called Europe 2020, has five 
assertive objects on employment, innovation, education, social inclusion and 
climate/energy. ERDF for the 2014-2020 has introduced an ex-ante condition which 
requires all EU member states on national and regional levels to have a Research and 
Innovation Strategy for Smart Specialisation (RIS3) for the process of entrepreneurial 
discovery before their operational programmes are approved (EC, 2014). RIS3 strategy 
is the most important target of the EU Cohesion policy. Among others, one of the most 
important concepts in this period is smart specialization. The international debate on 
RIS3 started in 2009 with the Knowledge Economist Policy Brief on “Smart Specialisation 
–The Concept” (EC, 2009) which was authored by three pioneering economists, 
Dominique Foray, Paul David and Bronwyn Hall (Capello and Lenzi, 2016). The report 
emphasizes the importance of specialisation on R&D and innovation at the regional level 
(Erdil and Çetin, 2019:215). Their plan on RIS3 stands on one very simple idea, 
“entrepreneurial process of discovery” which entrepreneurs act as leaders for future 
specialisation of regions. The logic of RIS3 could be simplified with the framework of 
“General Purpose Technologies (GPTs)”. GPTs such as steam engine, electricity and 
computers have the capacity to change economies by affecting multi-sectors (Foray et al., 
2009). Foray et al. (2011) appreciate the success of the concept of smart specialisation 
but warn the policy makers and academics about the fact that there is no sound base of 
empirical work in favour of the concept and underlines the fact that there is a growing 
gap between policy making and the theory. Smart specialisation involves discovering the 
unique and original components of the regional knowledge base and a policy-making 
process in conformity with these characteristics. Thus, there should be greater empirical 
work on these issues as well as the impact of the policies. The concept is a very young one 
and still needs empirical verification (Erdil and Çetin, 2019:215). 
  
The specialisation of one sector in a region that is economically valuable and important 
is not certainly a smart specialisation. The smart specialization strategy needs a policy 
design that focuses on the encouragement of entrepreneurs (Erdil and Çetin, 2019:215). 
Foray (2015) especially warns that the concept of specialisation is different than the 
usage in localization (agglomeration) economies. Regional concentration of knowledge 
and competences form the “specialisation” notion in RIS3 instead of the relative 
concentration of one industry in a country. “Smart” notion is smart because RIS3 connects 
all the actors (such as entrepreneurs, government and local actors) and encourages the 
regions to be ambitious but realistic (Foray et al., 2012). 
  
Europe’s RIS3 strategy is inspired from four leading elements which depends on the past 
experiences and it needs general transformation of these principles which are 
summarized as “four Cs”: Choices and Critical Mass, Competitive Advantage, Connectivity 
and Clusters, and Collaborative Leadership (Erdil and Çetin, 2019:216). RIS3 guide 
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(Foray et al., 2012) clearly defines the step-by-step process of designing a smart 
specialization strategy in six steps: 

● Analysis of the Regional Context and Potential for Innovation: The analysis 
contains the analysis of the regional assets, linkages to the rest of the world and 
dynamics of the entrepreneur environment; 

● Governance. Ensuring participation and ownership: Due to the collaboration of 
different stakeholders, it is necessary to have “boundary spanners” who should 
harmonize and moderate the RIS3 process; 

● Elaboration of an Overall Vision for the Future of the Region: As the RIS3 is a long-
term project, it is necessary to keep all the stakeholders in the process; 

● Identification of Priorities: Potential areas of smart specialisation should be 
identified to trigger the regional potential; 

● Definition of coherent policy mix, roadmaps and action plan; 
● Integration of monitoring and evaluation mechanisms. 

  
Capello and Kroll (2016) underline the fragilities of the RIS3 approach from theory to 
practice. They note that the new paradigm is a shift in the cohesion policy which promotes 
endogenous development, continuous innovation and a growth perspective (Capello and 
Kroll, 2016: 10). They advocate that the design of policies in the context of RIS3 should 
consider cohesion and competition goals simultaneously and take RIS3 as a good starting 
point for the development of cohesion policy. The success of RIS3 depends on its potential 
to transform knowledge and innovation into local development by using regionally 
untapped resources (Erdil and Çetin, 2019:216). In fact, Europe 2020 Strategy is the 
counter-move of the Commission to the failure of the Lisbon Strategy and its subsequent 
2005 revision (Budd, 2013). The impacts of the global financial crisis of 2008 had still 
been felt during the implementation of this strategy. The conceptual framework used in 
our research suggests that excellence in technology-generating research is not 
automatically converted into commercial success. Deriving the economic impact from 
technology and innovation depends on dynamic interactive processes involving 
individuals, firms and institutions which absorb, apply and diffuse knowledge. Therefore, 
a broad set of framework conditions should exist for the optimal impact of innovation 
processes. 
  
The most striking target of smart specialization policies is to perfectly construct 
complementary relations between excellence-based and place-based policies as a 
response to the linear research-based approach and corresponding European paradox. 
Although the findings of our analysis present partial evidence in favor of the success of 
smart specialization policies, the ultimate target seems not to be reached during the 
implementation. The synergy between excellence-based and place-based policies has 
seemed to be created at some extent in inter-regional level for collaboration towards 
knowledge convergence yet it seems to fail in the context of knowledge cohesion because 
of the problematic tension between excellence-based and place-based policies especially 
at the national level. While scientific excellence-based policy may not seem to be a high 
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priority for every region, place-based specialization, innovation policy and knowledge 
cohesion are. This tension resembles itself as a barrier for a desired level of knowledge 
cohesion at the regional level. 
  
The findings of selective nodes and transitivity as evidence of clustering drove knowledge 
convergence towards maturity. On the other hand, the co-evolution of both science and 
patent networks with a path-dependent history in which previous collaboration drives 
further collaboration may also be treated as an evidence for knowledge cohesion. 
Moreover, compared to the FP project network, convergence has a stronger pattern in 
the patent network in which collaboration in patents tend to be high among regions with 
similar innovation levels. This finding also underlines the above-mentioned tension for 
two different sets of policies. The actors seem to be more successful in the activities 
towards commercialization and mitigating the European paradox. However, the 
surprising finding of the insignificant effect of being highly innovative on collaboration 
verifies our presumption of the unsuccessful implementation for creating synergy 
between excellence-based and place-based policies towards knowledge cohesion. 
Another surprising finding is the irrelevance of being a high trust region in collaboration 
activities. However, collaboration tends to occur more among regions with similar trust 
levels. Although these findings seem to be surprising at the first instance, they constitute 
evidence in favor of knowledge convergence but not knowledge cohesion.  
  
In conclusion, the empirical findings of the project are in conformity with the taxonomy 
presented in Figure 2. We end up with relatively few regions in “knowledge space II” as 
compared to “knowledge space III”. However, this does not mean a total failure of smart 
specialization policies. The implementation process of these policies suffers from the 
aforementioned problems and tensions, namely multi-dimensional coordination and 
agency problems. The next programming period is planned to fuel the innovation 
activities to mitigate the existing problems. For the next programming period of 2021-
2027, the Commission proposed to modernize the Cohesion Policy in May 2018. The 
proposed Cohesion policy budget is approximately €331 billion for the 2021-2027 period 
as compared to €374 billion for the 2014-2020 period. The proposal can be evaluated as 
aspiring for the EU yet as pragmatic given the budgetary problems related to Brexit. It 
can be claimed that it is not myopic in the sense that its future orientation with the 
pressures of increase in innovativeness and underlining a strong commitment to 
solidarity. However, COVID-19 pandemic has created extra pressures for the 
implementation of the policy in the next programming period. The initial reaction of the 
Commission to the pandemic is a new instrument called the REACT-EU (Recovery 
Assistance for Cohesion and the Territories of Europe) package. REACT-EU will add fresh 
additional resources amounting to €47.5 billion to existing cohesion policy programmes. 
The real building block of the smart specialization policy was the entrepreneurial process 
of discovery. The success of the entrepreneurial process of discovery depends on 
involvement of stakeholders with past practices to realize overarching targets of 
knowledge cohesion. Nevertheless, this success is highly correlated with the stakeholder 



39 

selection in a wider range of complementary assets. As a final word, the EU is in urgent 
need of a new generation regional innovation policy that does not ignore the co-evolution 
of the systems at regional, national and supranational levels with a multi-dimensional 
perspective towards knowledge cohesion that further ensures social and economic 
cohesion. 
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