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Project summary 

Patent in-text references (i.e., references in the full text of the patent) to the scientific 

literature provide a valuable paper trail of knowledge flow from science to technological 

innovation and encode very different kinds of information than patent front-page references 

that are commonly used.  However, patent in-text references are unstructured and difficult to 

extract.  This project aims to (1) develop a high-performing machine learning method to 

extract patent in-text references and then match them to the Web of Science (WoS) database 

of scientific publications, (2) implement this method to EPO and USPTO patents to create a 

large-scale dataset linking patents to publications, and (3) uncover what kinds of science lead 

to more valuable patents and how in-text references are different from front-page references. 

To this end, we developed a three-stage pipeline for extracting and matching patent in-text 

references.  The first stage extracts reference strings in patent texts, the second stage extracts 

fields (e.g., author name, journal name, title) from reference strings, and the third stage 

matches references to WoS publications based on extracted fields.  To train our model, we 

randomly sampled 2,000 EPO patents and 4,000 USPTO patents, screened out a subset of 

patents that are unlikely to have in-text references, and manually annotated 725 EPO patents 

and 650 USPTO patents by labelling the scientific in-text references.  Out of these, 392 EPO 

patents made 3900 references and 2088 of them can be matched to a WoS publication, and 

319 USPTO patents made 3901 references and 2247 of them can be matched to WoS 

publications.  To evaluate the performance of our pipeline, we reserved 20% patents for 

testing.  The first stage reference extraction model achieved a precision of 98.9% and a recall 

of 97.7%, at the reference level, and the whole pipeline achieved a precision of 96.8% and a 

recall of 91.9%, at the unique patent-paper-pair level. 

Subsequently, we implemented this pipeline to the corpus of EPO and USPTO patent full 

texts granted between 1990 and 2022.  We identified 5,438,836 references from 492,469 EPO 

patents and matched 2,763,779 (51%) of these references to WoS publications.  We identified 

20,432,189 references from 1,449,398 of USPTO patents and matched 11,069,995 (54%) of 

these references to WoS publications. 

Using a subset of biotech USPTO patents and in-text reference therein, we studied what kinds 

of scientific publications lead to more valuable patents, as measured by patent forward 

citations and the stock market response to the issuing of the patent.  We found (1) a positive 
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effect of the number of referenced scientific papers, (2) an inverted U-shaped effect of 

basicness, (3) an insignificant effect of interdisciplinarity, (4) a discontinuous and nonlinear 

effect of novelty, and (5) a positive effect of scientific citations for patent market value but an 

insignificant effect on patent citations.  When comparing patent in-text and front-page 

references, we found a remarkable low overlap between them; the overlapping references 

only account for 20% of all in-text references and 27% of all front-page references.  In-text 

references are more basic and have more scientific citations than front-page references.  The 

difference in interdisciplinarity and novelty is small when comparing at the reference level 

and insignificant when comparing at the patent level.  In addition, in-text referenced papers 

have a higher chance of being listed on the front-page of the same patent when they are 

moderately basic, less interdisciplinary, less novel, and more highly cited.  Accordingly, using 

front-page reference yields substantially different results than using in-text references to 

study what kinds of science lead to more valuable patents.  These results suggest that findings 

regarding science-technology-linkages might be sensitive to which type of patent references 

are analyzed. 
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1. Motivation and project objectives 

1.1. Motivation 

How science feeds into technology is a long-standing question for economists, sociologists, 

management and policy scholars.  One obstacle for this line of inquiry is the lack of a large-

scale empirical identification strategy for tracing knowledge flows from science to 

technology.  To tackle this challenge, this project aims to develop a high-performing text 

mining method to extract and match patent in-text references to the scientific literature.  This 

method was then applied to the corpus of EPO and USPTO patents at a large scale, resulting 

in a dataset linking patents to publications.  This dataset will be an invaluable resource for 

studies of science and innovation.  Building on this dataset, we explored how different types 

of science contribute to technological innovation differently. 

References in patents to science provide a paper trail of the knowledge flow from science to 

patented inventions.  Since the pioneer work of Nunn and Oppenheim (1980), Narin and 

Noma (1985), and Tamada et al. (2006), they have been widely used for science and 

innovation studies, science policy, and business intelligence, for example, for studying 

industrial dependence on public science (Narin et al., 1997), examining concordances and 

distances between scientific disciplines and technological fields (Ahmadpoor & Jones, 2017; 

Callaert et al., 2014), uncovering mechanisms through which firm innovation benefits from 

science (Cassiman et al., 2008; Fleming & Sorenson, 2004), quantifying economic returns of 

science (Li et al., 2017; Watzinger & Schnitzer, 2019), and identifying characteristics of 

scientific contributions that are useful for patented inventions (Poege et al., 2019; Veugelers 

& Wang, 2019). 

However, the current practice relies mostly on patent front-page references but neglects the 

more difficult patent in-text references.  Front-page references are the references listed on the 

front page of the patent document, which are deemed as relevant prior art for assessing 

patentability by examiners, as well as inventors and patent attorneys.  In-text references are 

references embedded in patent text, serving a very similar role as references in scientific 

publications.  Because of their different generation processes, front-page and in-text 

references embody different information.  Prior studies have documented very low overlap 

between patent in-text and front-page references (Bryan et al., 2020; Marx & Fuegi, 2022; 

Verberne et al., 2019).  For example, Verberne et al. (2019) reported that the majority (88%) 
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of the extracted in-text references from 33,338 biotech patents are not listed on the front 

page. Several recent studies suggest that in-text references are a better indication of 

knowledge flow than front-page references (Bryan & Ozcan, 2020; Bryan et al., 2020; 

Nagaoka & Yamauchi, 2015). 

While patent front-page references are readily retrievable from the metadata in patent 

databases, in-text references are part of the unstructured, running text.  Therefore, identifying 

the start and end of a reference is a challenge.  Furthermore, patent in-text references are 

shorter and contain less information than front-page references (e.g., the title of the 

publication is typically not included), adding to the difficulty of matching in-text references 

to scientific publications. 

For example, USPTO patent “CRISPR-Cas systems and methods for altering expression of 

gene products,” in its first paragraph containing in-text references, cites four publications, in 

different formats and none of them appears on the front page.  

• Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 

185, Academic Press, San Diego, Calif. (1990). 

• Boshart et al. Cell, 41:521-530 (1985) 

• Mol. Cell. Biol. Vol. 8(1), p. 466-472, 1988 

• Proc. Natl. Acad. Sci. USA., Vol. 78(3), p.1527-31, 1981 

Therefore, this project aims to solve the challenging problem of extracting patent in-text 

references, by developing advanced text mining methods. 

1.2. Prior studies 

There are three general approaches to the problem: The first approach (i.e., Bryan et al., 

2020) skips the challenge of reference extraction and accordingly avoids extraction errors.  

However, a disadvantage is that starting from scientific publications instead of patent 

references is computationally inefficient, considering that WoS has more than 70 million 

publications and more than 21 thousand journals, but only a very small share of them are 

cited by patents.  Bryan et al. (2020) only attempted to match 248 journals covering less than 

5% WoS publications.  The second approach uses regular expressions (i.e., Marx & Fuegi, 

2022; Tamada et al., 2006), which has lower computational burden and can achieve a high 

level of precision, which is however usually at the expense of recall.  The third approach (i.e., 
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Rassenfosse & Verluise, 2020; Verberne et al., 2019; Voskuil & Verberne, 2021) relies on 

machine learning methods, and recently developed language models such as BERT-based 

models (i.e., Voskuil & Verberne, 2021) have shown great potential for achieving high recall 

and precision, while the used training and testing datasets are relatively small and 

homogeneous. 

To the best of our knowledge, Tamada et al. (2006) conducted the first systematic analysis of 

patent in-text references.  They used regular expressions to extract in-text references from 

granted Japanese patents. They extracted 9379 non-patent references from a sample of 1500 

patents across five technology fields, with recall of 98.2% and precision of 98.1%. 

Bryan et al. (2020) skipped the step of reference extraction but started from a set of scientific 

publications and then searched for coarse matches between the metadata of these publications 

and patent full texts.  They covered 3,389,853 articles published between 1984 and 2016 in 

248 prominent academic journals, which are cited collectively 2,786,041 times in 342,667 

USPTO patents granted since 1984, with 1,573,143 front-page references and 1,212,898 in-

text references.  Recall and precision were not reported. 

Our own prior work, Verberne et al. (2019) approached the reference extraction problem as a 

sequence labeling task and used Conditional Random Fields and Flair.  We trained models on 

22 patents with 1,952 manually labeled references and found that CRF obtained better results 

on citation extraction than Flair, with a precision of 83% and a recall of 81.3% at the 

complete reference level. However, Flair extracted many more references from the large 

collection than CRF, and more of those can be matched to WoS publications. Voskuil and 

Verberne (2021) further improved the training data and used BERT-based models (e.g., 

BERT, bioBERT, sciBERT). They achieved higher performance: testing recall and precision 

were 94.7% and 95.4% respectively for words at the beginning of citations, and 98.6% and 

97.6% for words inside citations, while such metrics were not reported at the complete 

reference level. 

Rassenfosse and Verluise (2020) applied the GROBID model to the full texts of USPTO 

patents but did not report recall or precision statistics. 

Marx and Fuegi (2022) combined the rule-based method and the GROBID model for 

reference extraction and evaluated model performance using a set of 5,939 references.  
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Depending on the chosen level of confidence score, prevision ranged from 93.53% to 100%, 

and recall from 82.05% to 57.70%. 

1.3. Project objectives 

This project aims to advance this line of literature with three main objectives: 

Objective 1: Developing a high-performing text mining method for extracting and 

matching patent in-text references to scientific publications.  

Building on our prior work (i.e., Verberne et al., 2019; Voskuil & Verberne, 2021), we aim to 

develop a method to extract and match patent in-text references with high precision and 

recall, by building a larger and more diverse training dataset and testing multiple more 

recently developed language models.  This research contributes to computer science, in 

particular the blooming fields of natural language processing and machine learning.  The 

named entity recognition (NER) methods we build upon were initially designed for extracting 

short strings (e.g., names) but are not tailored for relatively long strings such as references.  

Our project explores a new domain of applications for these methods and provides insights 

into the difficulties and possible solutions.  Also, the patent domain is notorious for its long 

and complex sentences, which complicates automated text analysis (Verberne et al., 2010).  

This research makes direct contributions to research in the intersection between text mining 

and patent data.  In addition, the training dataset that we build will be a valuable resource for 

the text mining community for developing new methods. 

Objective 2: Building a large-scale dataset linking individual patents and publications 

that are cited in patent text. 

This project applies our final method on the corpus of USPTO patents and EPO patents.  

After extracting in-text references from these patents with our text mining methods, we 

automatically match them to the Web of Science (WoS) database of scientific publications, 

which has high data quality and is widely used for science studies and policy.  This large-

scale dataset of publication-patent-links will be an invaluable resource for studying science 

and innovation.  It will benefit researchers in various disciplines. 
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Objective 3: Uncovering characteristics of scientific publications that are particularly 

useful for patented inventions and whether and how the cited science leaves an imprint 

on the citing patent. 

Previous studies have provided many insights into the mechanisms through which companies 

may benefit from science and factors that may facilitate the knowledge transfer from the 

academia to the industry.  However, we know little about what types of scientific research are 

more useful for technological development.  This project fills this gap in the literature, by 

exploring which types of scientific references lead to more valuable patents.  Furthermore, as 

our previous studies suggest that patent in-text and front-page references embody different 

kinds of information, we compare in-text and front-page references.  This research advances 

our understanding on the relationship between science and technology, as well as informs 

science and innovation policy and management.  Specifically, research findings are relevant 

for policymakers and university administrators to understand what types of research should 

be encouraged, if the goal is to make science more useful for the industry.  Research findings 

are also relevant for R&D managers for understanding what types of science are of high 

value, depending on their innovation strategies. 

 

2. Method: A three-stage pipeline 

We developed a three-stage pipeline for extracting the in-text scientific references from 

patents and matching them to WoS publications, as illustrated in Figure 1.  The first stage is 

reference extraction.  In this stage, given the text of the patents, the in-text references are 

extracted using a sequence labeling model.  In the second stage, field extraction, the fields of 

the references (author name, year, journal name, etc.) are extracted from the reference texts.  

In the third stage, matching, the extracted fields are matched with entries in the Web of 

Science (WoS) publication database to find the corresponding scientific publication.  We use 

pre-trained sequence labeling models for the reference extraction and field extraction stages 

that we fine-tune for our task.  For training these models and evaluating our proposed 

pipeline, we have collected a manually annotated benchmark dataset.  We provide a detailed 

explanation of each of the stages in our pipeline in the following sections.



10 

 

 

Figure 1. Three-stage pipeline for extracting and matching patent in-text references. 
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2.1. Reference extraction 

We approach the problem of reference extraction as a sequence labeling task.  Given the text 

of the patent, the model labels each token with BIO labels, where “B” means the beginning 

token of a reference, “I” means a token inside a reference, and “O” means a token outside of 

the reference.  We fine-tune different pre-trained BERT-based language models for context 

modeling with a linear layer on top for classification.  We experiment with patent-specific 

language models, i.e., PatentBert (Lee & Hsiang, 2019) and Bert for Patents (Srebrovic & 

Yonamine, 2020), as well as other language models including BERT (Devlin et al., 2018) and 

SciBERT (Beltagy et al., 2019). 

To form the input sequences of the model, the text of the patent is segmented based on the 

following rules:  We need to make sure the length of the sequence does not exceed the 

maximum sequence length allowed by the model.  Therefore, we first tokenize the patent text 

using the tokenizer of the same language model, then segment the text in sequences of at 

most 512 tokens. 

After labeling texts with the fine-tuned sequence labeling model, the references are identified 

based on the predicted BIO labels. Each “B” label indicates the start of a new reference and 

the end token of a reference is the last “I” label after the “B” label. 

2.2. Field extraction 

The field extraction stage is also a sequence labeling model based on BERT models.  Our 

method includes a pre-trained BERT-based language model and a classification layer on top 

of each output.  The input of this model is the extracted reference from the previous stage.  

We do not give the context of the reference to the field extraction model and only rely on the 

reference text itself.  We define 14 labels:Year, Author-B, Author-I, Source-B, Source-I, Title-

B, Title-I, Page-B, Page-I, Volume, Number, Issue, Identifier-B, Identifier-I.  The Identifier 

can be the DOI, ISSN, or BSSN number, Title is the name of the publication, Source can be 

the name of the journal, conference, or name of the book when the reference is to a book 

chapter.  Using the above-mentioned labels, we extract (at most) 9 fields from references and 

pass them to the next stage. 
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2.3. Matching 

In this stage, the fields extracted from the reference text are used to identify the referred 

scientific paper. We only process the references that have a year field and for which the value 

of the year is later than 1980 because our WoS database only includes publications starting 

from 1980.  Some of the fields, like Author, can have multiple values.  For the fields with 

multiple values, we only consider the first author.  We create a vector representation of the 

reference and match the vector with all of the publications in that year.  For the Author field, 

we consider a match when the author's name of the record is a sub-string of the author’s name 

of the reference or vice versa.  For the Journal field, we consider it a match when the 

extracted journal name is a sub-string of the full name, or standard abbreviations provided by 

the WoS database, or vice versa.  For the rest of the fields, we consider a match when we 

have an exact match between the fields of the reference and the fields of that record.  The 

count of the matched fields for each record is calculated and stored as the match_score s, 

indicating the number of fields out of the 9 fields (excluding the year, which was a 

prerequisite for the matching) of the reference that are matched with this record.  The 

matched entity is the ID of the record that is matched to the reference.  In addition, we define 

a Boolean variable exact_match that indicates whether the reference is matched to a record in 

the WoS database or not.  The exact_match variable is True if the (1) Title or Identifier (DOI) 

of the reference is matched with exactly one record in the WOS database or (2) the maximum 

number of match_score s is at least 3 and only there is one record with this match_score, or 

(3) four fields of reference including volume, issue, page, and source are matched with the 

record. 

 

3. Dataset for training the pipeline 

3.1. Sample 

We sampled a set of EPO patents and a set of USPTO patents, separately, for student 

assistants to manually annotate.  We gradually sampled 1000 random patents and released 

them for annotation, until we exhausted all our person-hours.  Furthermore, only patents that 

have in-text references are useful for training the model, while the majority of patents do not 

have any in-text preferences. Therefore, for the sampled 1000 patents, we kept all patents that 
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were predicted to have at least one in-text reference for annotation using the model developed 

by Verberne et al. (2019).  For every four such patents, we added one randomly selected 

patent that was predicted not to have any in-text references. We discarded other patents that 

were predicted not to have any in-text references from annotation work.  Another point of 

consideration was to have a dataset with a balanced number of annotated EPO and USPTO 

patents.  In the following, we provide further details regarding the sample (see also Figure 2). 

For EPO patents, we downloaded and processed “EP full-text data for text analytics” from: 

https://www.epo.org/searching-for-patents/data/bulk-data-sets.html.  The version we 

downloaded covers patents up to Week 30 of 2021, including file up to “EP3800000.txt.”  We 

kept patents that meet the following criteria: (1) published between 1990-2022, (2) are in 

English, (3) have title and description fields, and (4) are granted utility patents (type B1, B2, 

B3, and B9), when a patent has multiple published versions, we kept the most recent version. 

Then we randomly sampled 2000 EPO patents in two batches. In order to pre-filter the 

patents without any in-text reference, we used the reference extraction model developed by 

Verberne et al. (2019) to identify the references of the patents in this sample.  According to 

the prediction of this model, 746 of them had at least one reference.  For annotation, we kept 

all these 746 patents and additionally sampled 187 patents from the rest of the patents which 

were predicted not to have any references. We gradually released them for annotation.  In the 

end, we managed to annotate 725 patents (consisting of 580 predicted to have references and 

145 predicted not to have any). 

For USPTO patents, we downloaded “Patent Grant Full Text Data (No Images) (JAN 1976 - 

PRESENT)” from: https://bulkdata.uspto.gov/.  The version we downloaded covers patents 

up to 12 March 2022, including files up to “ipg220412.xml.”  We kept only B1 or B2 

versions of utility patents published between 1990 and 2022.  Then we randomly sampled 

4000 patents in four batches.  We used the same model for predicting the references of the 

sample of patents.  According to the prediction of the model, 615 of them had at least one 

reference.  For annotation, we kept all these 615 patents and randomly sampled 154 from the 

rest of the patents that were predicted to have no references. We gradually released them for 

annotation.  In the end, we annotated 650 USPTO patents of which 520 were predicted to 

have references and 130 not. 

 

https://www.epo.org/searching-for-patents/data/bulk-data-sets.html
https://bulkdata.uspto.gov/
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Figure 2. Sample composition for training the pipeline. 

 

 

3.2. Annotation 

In the pre-processing step, we added whitespace before and after each punctuation mark in 

the text of patents, because it helps the annotators to select the exact span easier and, in this 

way, we can ensure that they are correctly tokenized by the tokenizer of BERT models. 

We had two rounds of annotation, (1) the first for the first stage reference extraction model 

and (2) the second for the second stage field extraction model and the third stage of matching.  

In the first round, we hired 8 master students at Leiden University for 40 hours each in one 

month, for annotating references in patent texts. We designed a guideline for annotators and 

trained them in one session. We had one pilot annotation step in which all annotators 

annotated the same 10 patents. We evaluated their performance in the pilot step and gave 

them feedback on their performance, and additional instructions for the actual annotation. 

The annotators were given a total number of 4 batches of data to annotate (one batch per 

week).  We included some overlap patents in each batch between different persons to measure 

their inter-rater agreement. 

The annotated references were then checked by two senior members of the project team and 

were modified based on the agreement between them.  In addition, some human errors were 

spotted during the second round of annotation (see the next paragraph) and corrected 

accordingly.  Furthermore, in the evaluation step, we manually checked the prediction of the 

model for each fold of the dataset and modified the dataset based on the predicted references 
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if needed.  For the overlap patents, we included all of the references annotated by both 

annotators. 

In the second round of annotation, for stages 2 and 3 of the pipeline, we hired four master 

students at Leiden University for 40 hours each in one month.  We asked them to (1) annotate 

fields of the references, (2) find the corresponding WoS publication of the reference, and (3) 

determine the type of reference (which can be Journal, book, manual, and other). 

The statistics of the annotated dataset is shown in Table 1. 

 

Table 1. Statistics of the annotated dataset. 

 # Extracted References # Patents # Matched References 

EPO 3900 392 2088 (53.5%) 

USPTO 3901 319 2247 (57.6%) 

All 7801 711 4335 (55.6%) 

 

4. Performance evaluation 

We first evaluate the performance of each stage model and then the whole pipeline, end to 

end. 

4.1. Reference extraction 

We compared multiple pre-trained BERT-based models including patent specific models, i.e., 

BERT for patent and PatentBERT, and other models like SciBERT and BERT-base.  In this 

stage, a model with higher recall is preferred because we want to extract as many as the 

references from the patent text, and precision can be improved in the latter stages, more 

specifically, non-scientific or wrong references would be discarded in the matching stage when 

the matching model cannot match them with any record in the WoS dataset.  We used five-fold 

cross-validation for evaluating the models.  The results of evaluating the BERT models are 

shown in Table 2.  SciBERT achieved the highest recall. We found the best parameter setting 

using five-fold cross-validation. We fine-tuned the SciBERT model using the best parameter 

setting on the entire labeled dataset for the main pipeline. 
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Table 2. Performance of different language models for reference extraction (Stage 1). 

Model Recall 

B 

Precision 

B 

Recall 

I 

Precision 

I 

SciBERT 0.953 0.760 0.985 0.780 

BERT for patents (large) 0.952 0.767 0.983 0.781 

BERT 0.903 0.725 0.976 0.760 

PatentBERT 0.943 0.752 0.981 0.775 

 

4.2. Field extraction 

We compared three BERT-based language models including NER-BERT (Liu et al., 2021), 

SciBERT (Beltagy et al., 2019), and BERT-base (Devlin et al., 2018).  We evaluated the 

models using five-fold cross-validation.  We had nine labels and selected the best 

performance of the models based on average Precision and Recall for these nine labels. We 

have selected the best parameter setting based on five-fold cross-validation and used it for 

training the model for the main pipeline on the entire dataset. For extracting the fields, both 

precision and recall are important because not only we need to extract as many fields as 

possible, but also the incorrect fields can lead to incorrect matching in the next stage. The 

Results of different models are reported in Table 3. The SciBERT model achieved the best 

performance for field extraction. 

 

Table 3. Performance of different language models for field extraction (Stage 2). 

Model Precision Recall F1 Accuracy 

SciBERT 0.945 0.958 0.951 0.966 

NER-BERT 0.942 0.956 0.949 0.965 

BERT 0.941 0.956 0.948 0.965 

 

4.3. Matching 

The matching model is not a supervised model but a rule-based (as specified in the method 

subsection). The result of evaluating the matching model using the entire dataset is reported 

in Table 4. We removed duplicate reference strings from the set of extracted references and 
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used the unique references (in each patent) for evaluating the matching model. The collected 

dataset has 6956 unique references. 

 

Table 4. Performance of matching (Stage 3). 

TP TN FN FP Precision Recall Accuracy 

59% 37.2% 2.95% 0.83% 98.6% 95.2% 96.2% 

 

4.4. End-to-End 

For the end-to-end evaluation of the whole pipeline consisting of three models, we used 80% 

patents to train the models and the remaining 20% for testing. We used the best parameter 

setting found using five-fold cross-validation for training stage 1 and 2 models.  The 

predicted references by the stage 1 reference extraction model are passed to the stage 2 field 

extraction model and extracted fields from the stage 2 model are then passed to the stage 3 

matching model. 

We first evaluate the stage 1 reference extraction model at the reference level (as subsection 

4.1 only reported performance at levels of B and I tokens).  Table 5 shows different types of 

outcomes.  In total, the reference extraction model extracted 863 reference strings that match 

exactly with human-annotated reference strings. 38 references are extracted with minimal 

differences (e.g., missing the punctuation marks at the end), and 28 with small differences 

(e.g., some author names were not included) which however does not affect further matching.  

Interestingly, the model extracted 27 references that were not annotated by human annotators, 

but our further investigation concluded that the model prediction was correct while human 

annotators missed them.  We classify all these four types of cases as true positives.  Our 

model failed to extract 15 references and extracted 8 references with substantial differences 

(e.g., only include author name) such that these references cannot be matched.  We classify 

these two types of cases as false negatives.  It is interesting to note that these cases coincide 

with difficult cases reported by our human annotators during the annotation process; our 

human annotators were not confident about whether they should be annotated or not.  Our 

model extracted 11 references that are not actually references, which we label as false 

positives.  Overall, the reference extraction model achieved the precision of 98.9% and recall 

of 97.7%, which are very high. 
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Table 5. Reference extraction: performance at the reference level. 

Label N Description 

True positive 863 exact extraction 

 38 extracted with minimal differences, e.g., punctuation 

 28 extracted with small differences 

 27 extracted but not in gold data 

False negative 15 extraction failed 

 8 extracted with substantial differences 

False positive 11 false extraction 

 

Prec Recall F1 

98.9% 97.7% 98.3% 

 

Finally, we evaluate the end-to-end performance by comparing the set of unique patent-paper-

pairs identified by our model and those identified by human annotators.  The end-to-end 

precision is 96.8% and recall is 91.9%, which are satisfactory. 

 

Table 6. Whole pipeline end-to-end performance. 

Prec Recall F1 

96.8% 91.9% 94.3% 

 

5. Implementation 

The whole pipeline was trained using the fully annotated dataset and then implemented for 

extracting and matching the references from the corpus of EPO and USPTO patents. 

5.1. EPO 

The pipeline is executed on all utility patents of EPO that are published between 1990-2022.  

More specifically, we kept patents with types of B1, B2, B3, or B9, written in English, and 

then processed the most recent version with both description and title information.  From 

492,469 of these patents, our pipeline extracted at least one reference, and these patents 

collectively made 5,438,836 references.  The average number of references for the patents 
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that have at least one reference is 11.  About 51% (2,763,779 references) of the extracted 

references were matched to scientific publications in WoS. 

The distribution of the match_score s for the extracted references is shown in Table 7.  The 

value of s = -2 means that the reference does not include publication year information and s = 

-1 means that the reference has a publication year before 1980.  We do not have the record of 

the publications before the year 1980 in WoS.  References that do not have publication year 

information or were published before 1980 account for around 42% (1,123,513) of the non-

matched references and 21% of the total references. 

 

Table 7. The Distribution of the match_score for extracted references. 

match_score s EPO USPTO 

-2 638,393 2,445,168 

-1 485,120 1,351,659 

0 226,341 728,867 

1 1,125,257 4,034,114 

2 299,178 1,159,912 

3 615,509 2,209,559 

4 1,650,860 6,508,584 

5 348,116 1,766,368 

6 49,765 225,776 

7 297 2,182 

 

5.2. USPTO 

The pipeline is executed on all utility patents of USPTO that are published between 1990-

2022.  Our pipeline has extracted 20,432,189 references from patents of 1990-2022.  These 

references are extracted only from 1,449,398 unique patents. The average number of 

references for each USPTO patent (that has at least one reference) is 14.  Among 20,432,189 

extracted references, 11,069,995 of them (54%) are matched and 9,362,194 of them (46%) 

are not matched with a publication.  

The distribution of the matching score for the extracted references is shown in Table 7. 

According to this, 34% of the non-matched references do not have a year or are published 

after 1980.  These references account for 19% of the total references.  
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6. Investigating science-technology-linages 

We investigated how patent value is affected by referencing different types of science, in 

terms of basicness, interdisciplinarity, novelty, and scientific impact, using a subset of 33,337 

biotech utility patents granted by USPTO from 2006 to 2010, and their 860,879 in-text 

references matched to the Web of Science (WoS) database.  We focus on one particular field 

to control for field heterogeneities, and we choose biotech because it is a sector relying 

heavily on science. 

6.1. Measures 

Patent measures (dependent variables) 

For each patent, we constructed two measures to capture its value: (1) Patent citations, which 

is the number of times a patent is cited by future patents, using a five-year citations time 

window, following the common practice.  (2) Market value, which is based on the stock 

market response to the issuing of the patent, in million US dollars, developed by Kogan et al. 

(2017).  Information about the market value is available for a subset of 7,336 patents in our 

sample. 

Science measures (independent variables) 

We first constructed measures for individual scientific papers.  For Basicness, we adopted the 

measure proposed by Weber (2013) for biomedical research, which classifies a paper as 

highly basic if it only has cell/animal-related MeSH terms but no human-related MeSH terms, 

moderately basic if it has both cell/animal- and human-related MeSH terms, and not basic 

(i.e., clinical) if it only has human-related but not cell/animal-related MeSH terms.  This 

measure is an ordinal measure, and its attributes 1, 2, and 3 correspond to not basic, 

moderately basic, and highly basic, respectively. 

For Interdisciplinarity, we adopted the Rao-Stirling measure (Stirling, 2007), which captures 

all the three diversity dimensions (i.e., variety, balance, and disparity) of the involved 

disciplines underlying a study.  More specifically, it equals ∑ 𝑝𝑖𝑝𝑗𝑑𝑖𝑗𝑖≠𝑗 , where i and j are 

indices of a paper’s referenced disciplines (i.e., WoS subject categories), 𝑝𝑖 is the proportion 
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of references to discipline i, and 𝑑𝑖𝑗 is the distance between discipline i and j, measured as 1 – 

cosine similarity between discipline i and j based on their co-citation matrix.  This measure is 

a continuous measure ranging from 0 to 1.  

For Novelty, we adopted the measure developed by Wang et al. (2017), which follows the 

combinatorial novelty perspective and identifies novel paper as the ones that makes 

unprecedented combinations of pre-existing knowledge components, where knowledge 

components are proxied by referenced journals.  This measure is a binary variable: 1 if novel 

and 0 if not novel. 

For Scientific citations we count the number of forward citations a scientific paper receives 

from future papers in the Web of Science (WoS) database, using a five-year citation time 

window, following the common practice. 

At the patent level, for quantifying a patent’s profile of referenced science, in terms of 

basicness, interdisciplinarity, novelty, and scientific citations, we take the average of these 

four measures across its referenced scientific papers: Avg(Basicness), 

Avg(Interdisciplinarity), Avg(Novelty), and Avg(Scientific citations).  In addition, our focal 

explanatory variables also include I(sNPR), which indicates whether a patent has any 

scientific references, and sNPRs, which is the number of unique WoS papers referenced by a 

patent.  Descriptive statistics are reported in Table 8. 

 

Table 8.  Descriptive statistics (Unit of analysis: patent) 

 N Mean Std. Dev. Min Max 

Patent citations 33,337 3.766 8.238 0 549 

Market value (m$) 7,336 46.757 87.453 0.001 993.601 

I(sNPR) 33,337 0.806 0.395 0 1 

sNPRs 26,872 32.036 43.005 1 711 

Avg(Basicness) 26,012 2.445 0.394 1 3 

Avg(Interdisciplinarity) 26,709 0.254 0.032 0.037 0.429 

Avg(Novelty) 26,872 0.155 0.157 0 1 

Avg(Scientific citations) 26,872 124.208 191.441 0 5871 

 



22 

 

6.2. Results 

We estimate how the characteristics of referenced science affect patent value, as measured by 

patent forward citations, where referenced science is based on in-text references.  The 

dependent variable is an over-dispersed count variable, so we fit a series of Negative 

Binomial (NB) models.  Regression results are reported in Table 9.  Column 1 reports the NB 

model that uses whether having scientific references as the focal independent variable and 

incorporates the complete set of patent’s issuing year and IPC class dummies.  The result 

suggests that patents having in-text scientific references receive 29.1% more patent citations 

than patents not having in-text scientific references, issued in the same year and IPC class.  

Within the set of patents that have in-text scientific references, we further examine the 

intensity of reliance on science, that is, the number of referenced scientific papers.  This 

independent variable is also a count variable and has a skewed distribution, so we take its 

natural logarithm for regression analysis.  Column 2 shows that as a patent’s number of 

referenced papers increases by 1%, its patent citations increase by 0.122%. 

Then we move on to explore the characteristics of referenced science.  Column 3-6 each uses 

average basicness, interdisciplinarity, novelty, and scientific citations of referenced papers as 

the focal independent variable.  In all these models, the ln(number) of scientific references is 

controlled for, in addition to patent issuing year and IPC class.  Avg(Scientific citations) is 

skewed so it takes natural logarithm transformation for regression analysis.  Column 3 shows 

that, as the average basicness of referenced papers increases by 1, patent citations decrease by 

7.0%, holding all other variables fixed.  Column 4 suggests no significant effects of 

interdisciplinarity.  Column 5 shows that, as the average novelty of referenced papers 

increases by 1, patent citations increase by 15.6%, holding all other variables fixed.  Column 

6 suggests no significant effects of scientific citations.  Column 7 further fits a model with all 

these four variables together and yields consistent results as running separate models for each 

independent variable (i.e., Column 3-6).  In summary, patents building on less basic but more 

novel science are more impactful in the technological domain. 
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Table 9. In-text scientific references and patent citations 

 Patent citations 

NB 

 (1) (2) (3) (4) (5) (6) (7) 

I(sNPR) 0.291*** 

(0.029) 

      

ln(sNPRs)  0.122*** 

(0.011) 

0.133*** 

(0.012) 

0.122*** 

(0.011) 

0.122*** 

(0.011) 

0.124*** 

(0.011) 

0.136*** 

(0.012) 

Avg(Basicness)   -0.070* 

(0.034) 

   -0.073* 

(0.035) 

Avg(Interdisciplinarit

y) 

   0.622 

(0.446) 

  0.219 

(0.506) 

Avg(Novelty)     0.156+ 

(0.082) 

 0.175* 

(0.086) 

ln(Avg(Scientific 

citations) +1) 

     -0.009 

(0.013) 

-0.009 

(0.014) 

Issue year Y Y Y Y Y Y Y 

IPC class Y Y Y Y Y Y Y 

N 33337 26872 26012 26709 26872 26872 25930 

BIC 152066 123120 118841 122524 123115 123130 118555 

Robust standard errors in parentheses.  *** p < .001, **p < .01, *p < .05, +p < .10. 

 

We then use the market value (in million US dollars) of the patent based on stock market 

reaction to the event of patent being issued as the dependent variable.  This variable is also 

skewed but not a count variable, so we take natural logarithm transformation and then fit 

Ordinary Least Squares (OLS) models.  Results are reported in Table 10.  Results show that 

patents with in-text scientific references worth 86.8% more than patent without in-text 

scientific references (Column 1).  Within the set of patents having in-text scientific 

references, patent market value increases by 0.190% as the number of referenced scientific 

papers increases by 1% (Column 2).  As the average basicness of referenced science increases 

by 1, patent market value decreases by 37.8% (Column 3).  Interdisciplinarity and novelty 

has no significant effects on patent market value (Column 4 and 5).  As the average scientific 

citations of referenced science increase by 1%, patent market value increases by 0.094% 

(Column 6).  These results are robust when fitting a model with all four variables together 

(Column 7).  In summary, patents building on papers that are less basic but more highly cited 

in science generate higher private market value. 
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Table 10.  In-text scientific references and patent market value 

 ln(Market value) 

OLS 

 (1) (2) (3) (4) (5) (6) (7) 

I(sNPR) 0.868*** 

(0.079) 

      

ln(sNPRs)  0.190*** 

(0.019) 

0.191*** 

(0.020) 

0.182*** 

(0.020) 

0.190*** 

(0.019) 

0.164*** 

(0.020) 

0.163*** 

(0.021) 

Avg(Basicness)   -

0.378*** 

(0.081) 

   -

0.380*** 

(0.082) 

Avg(Interdisciplinarit

y) 

   -0.523 

(0.929) 

  0.122 

(1.095) 

Avg(Novelty)     0.003 

(0.189) 

 -0.073 

(0.223) 

ln(Avg(Scientific 

citations)+1) 

     0.094** 

(0.029) 

0.116*** 

(0.032) 

Issue year Y Y Y Y Y Y Y 

IPC class Y Y Y Y Y Y Y 

N 7336 6181 5984 6143 6181 6181 5969 

R2 0.091 0.074 0.077 0.073 0.074 0.076 0.079 

BIC 30944 25341 24427 25197 25341 25337 24374 

Robust standard errors in parentheses. *** p < .001, **p < .01, *p < .05, +p < .10. 

 

Our regression models assume a linear equation, where the left-hand side is the natural log of 

a dependent variable (patent citations or market value), and the right-hand side consists of a 

series of independent variables.  This setup is flexible for fitting positive (or negative) effects 

at an increasing or decreasing rate.  However, it does not allow nonmonotonic effects (e.g., 

inverted U-shaped) or discontinuous effects.  Therefore, we reexamine the effects using a 

more non-parametric approach without assuming a linear equation.  Specifically, we 

categorize our independent variables into 10 ordered and evenly sized groups and then 

estimate the expected patent citations and market value for each group.  Because of ties, not 

all groups are evenly sized.  Taking the number of in-text scientific references as an example, 

6,465 patents with 0 references are classified into Group 1, the next 1,891 patents with only 1 

reference are classified into Group 2, …, the last 3,330 patents with 71 to 711 references are 

classified into Group 10.  Then we use group numbers as a factor/categorical variable for 

regression analysis, and results are reported in Table 11 and 12.  Based on the regression 

results, we can estimate the expected value of the dependent variables for each group for an 

average patent (i.e., issuing year is 2010, IPC class is C12N, and other control variables (if 

any) at the mean).  Figure 3 plots these estimates. 
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Table 11.  In-text references and patent citations: A nonparametric approach 

 Patent citations 

NB 

 (1) (2) (3) (4) (5) 

Group: sNPRs Basicness Interdisciplinarit

y 

Novelty Scientific 

citations 

2 0.018 

(0.048) 

0.170** 

(0.061) 

-0.063 

(0.058) 

/ 0.009 

(0.053) 

3 0.153* 

(0.074) 

0.027 

(0.051) 

-0.069 

(0.060) 

-0.176** 

(0.056) 

0.105 

(0.077) 

4 0.040 

(0.043) 

0.066 

(0.054) 

-0.056 

(0.062) 

-0.094 

(0.058) 

-0.018 

(0.054) 

5 0.171*** 

(0.041) 

-0.062 

(0.054) 

-0.066 

(0.060) 

-0.039 

(0.054) 

0.099+ 

(0.057) 

6 0.401*** 

(0.046) 

-0.018 

(0.049) 

-0.138* 

(0.059) 

0.026 

(0.056) 

-0.012 

(0.058) 

7 0.352*** 

(0.045) 

-0.048 

(0.051) 

-0.009 

(0.059) 

0.047 

(0.054) 

0.012 

(0.060) 

8 0.275*** 

(0.043) 

-0.067 

(0.051) 

0.003 

(0.057) 

0.040 

(0.051) 

-0.226*** 

(0.062) 

9 0.432*** 

(0.042) 

-0.027 

(0.045) 

-0.022 

(0.057) 

0.161** 

(0.050) 

-0.030 

(0.061) 

10 0.616*** 

(0.044) 

/ 0.090 

(0.077) 

0.021 

(0.070) 

0.113+ 

(0.061) 

ln(sNPRs

) 

/ 0.129*** 

(0.013) 

0.135*** 

(0.010) 

0.127*** 

(0.013) 

0.130*** 

(0.012) 

Issue 

year 

Y Y Y Y Y 

IPC class Y Y Y Y Y 

N 33337 26012 26709 26872 26872 

BIC 151854 118890 122573 123135 123129 

Chi2 314*** 22** 16+ 44*** 53*** 

LR Chi2 54*** 22** 22** 51*** 73*** 

This table repeats the analysis reported in Table 9 but uses the categorized science measures as 

independent variables instead.  Take the variable sNPRs Group as an example, we code it as 1 if a 

patent’s number of referenced papers is among the lowest 10%, 2 if among the next 10%, … 10 if 

among the top 10%.  The complete categorization scheme is reported in Appendix Table A1.  Due to 

ties, not all groups are evenly sized, and sometimes two groups are be merged.  For example, for 

Avg(Basicness), group 9 and 10 are merged and labelled as group 9; for Avg(Novelty), group 1 and 2 

are merged and labelled as group 1.  Then we use these categorical variables as the independent 

variable for regression.  Group 1 is the reference group.  Coefficients indicates the difference between 

a focal group and the reference group (i.e., Group 1).  Take Column 1 as an example, the coefficient 

of 0.018 for Group 2 means that patents in Group 2 have 1.8% more patent citations than Group 1.  

Chi2 tests the joint significance of all the levels of the group variable (H0: all coefficients of Group 2, 

3, …,10 equal to 0).  LR Chi2 reports the likelihood ratio test between the focal regression model and 

the model with the raw uncategorized independent variable.  More specifically, it tests the model in 

Table 4 column 2 against the model in Table 2 column 3, Table 4 Column 3 vs. Table 2 Column 4, 

Table 4 Column 4 vs. Table 2 Column 5, and Table 4 Column 5 vs. Table 2 Column 6.  For Table 4 

Column 1, we fit another model with ln(sNPRs +1) as the independent variable, because Table 2 

Column 2 only includes patents with at least one reference.  If we test Table 4 Column 1 against Table 

2 Column 1, then the result is: 295***.  Being significant here means the model in this table fits the 

data better than its corresponding model in Table 2.  Robust standard errors in parentheses. *** p 

< .001, **p < .01, *p < .05, +p < .10. 
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Table 12. In-text references and patent market value: A nonparametric approach 

 ln(Market value) 

OLS 

 (1) (2) (3) (4) (5) 

Group sNPRs Basicness Interdisciplinarit

y 

Novelty Scientific 

citations 

2 0.070 

(0.146) 

0.298* 

(0.139) 

0.470*** 

(0.118) 

/ 0.234+ 

(0.139) 

3 0.447*** 

(0.122) 

0.199+ 

(0.116) 

0.381** 

(0.115) 

0.495*** 

(0.112) 

-0.010 

(0.135) 

4 0.662*** 

(0.120) 

0.502*** 

(0.115) 

0.412*** 

(0.115) 

0.737*** 

(0.107) 

-0.025 

(0.137) 

5 0.835*** 

(0.107) 

0.013 

(0.115) 

0.107 

(0.116) 

0.333** 

(0.112) 

0.015 

(0.135) 

6 0.955*** 

(0.101) 

-0.428*** 

(0.116) 

0.225+ 

(0.117) 

0.213+ 

(0.112) 

0.066 

(0.134) 

7 0.979*** 

(0.100) 

-0.105 

(0.108) 

0.356** 

(0.118) 

0.075 

(0.111) 

0.079 

(0.134) 

8 1.042*** 

(0.099) 

-0.346** 

(0.116) 

0.439*** 

(0.125) 

0.146 

(0.108) 

0.615*** 

(0.133) 

9 1.055*** 

(0.100) 

-0.181+ 

(0.107) 

0.052 

(0.127) 

0.054 

(0.108) 

0.257+ 

(0.133) 

10 1.193*** 

(0.092) 

/ 0.251+ 

(0.132) 

0.262* 

(0.114) 

0.337* 

(0.131) 

ln(sNPRs

) 

/ 0.168*** 

(0.022) 

0.166*** 

(0.022) 

0.126*** 

(0.026) 

0.163*** 

(0.022) 

Issue 

year 

Y Y Y Y Y 

IPC class Y Y Y Y Y 

N 7336 5984 6143 6181 6181 

R2 0.107 0.093 0.079 0.087 0.086 

BIC 30865 24374 25206 25314 25334 

F 26*** 16*** 5*** 12*** 9*** 

LR Chi2 32*** 106*** 43*** 88*** 64*** 

This table repeats the analysis reported in Table 10 but uses the categorized science measures as 

independent variables instead.  F tests the joint significance of all the levels of the group variable (H0: 

all coefficients of Group 2, 3, …,10 equal to 0).  LR Chi2 reports the likelihood ratio test between the 

focal regression model and the model with the raw uncategorized independent variable.  More 

specifically, it tests the model in Table 5 column 2 against the model in Table 3 column 3, Table 5 

Column 3 vs. Table 3 Column 4, Table 5 Column 4 vs. Table 3 Column 5, and Table 5 Column 5 vs. 

Table 3 Column 6.  For Table 5 Column 1, we fit another model with ln(sNPRs +1) as the independent 

variable, because Table 3 Column 2 only includes patents with at least one reference.  If we test Table 

5 Column 1 against Table 3 Column 1, then the result is: 133***.  Being significant here means the 

model in this table fits the data better than its corresponding model in Table 2.  Robust standard errors 

in parentheses. *** p < .001, **p < .01, *p < .05, +p < .10. 
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Figure 3. In-text scientific references and patent value. 

 
This figure plots the estimated value of patent value for an average patent in different science measure groups.  Plot A-E and F-J are based on regression 

models reported in Table 11 Column 1-5 and Table 12 Column 1-5, respectively.  An average patent means its issuing year is 2010, IPC is C12N, and for Plot 

B-E and G-J, the natural log number of references takes the mean value.  The length of the blue horizontal lines is proportional to the group size.  The blue 

vertical lines mark the 95% confidence interval.  p-value is for the joint significance of all the levels of the group variable, corresponding to Chi2 in Table 11 

and F in Table 12.
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Regarding the number of in-text references, consistent with the result reported in the 

preceding section, Fig 3A&F display a roughly continual increase in patent citations and 

market value, as the number of in-text references move from 0 (Group 1) to 1 (Group 2), and 

then further increases (from Group 2 to Group 10).  There is consistent evidence that citing 

science and citing more scientific papers have a positive effect on patent value. 

For average basicness, the previously reported result suggests that it has negative effects on 

patent citations and market value.  However, results in Fig 3B&G suggest inverted U-shaped 

effects.  Both patent citations and market value first increase and then decrease as the average 

basicness increases.  Patent citations reach the peak point at Group 2, and if we dismiss 

Group 2 due to its small group size, then the peak point is reached at Group 4.  Patent market 

value reaches its peak at Group 4.  These results suggest that a moderate level of basicness is 

optimal for patent value, while too applied or too basic lead to lower patent value. 

In terms of interdisciplinarity, our previous result suggests insignificant effects of 

interdisciplinarity on patent citations and market value.  Fig 3C seems to suggest a U-shaped 

effect, but the p-value for the joint significance of interdisciplinarity groups is larger than 

0.05.  Fig 3H suggests no clear association between average interdisciplinarity and patent 

market value.  Taken together, we conclude no significant effect of average interdisciplinarity 

on patent value. 

Our previous result suggests that average novelty has a positive effect on patent citations but 

an insignificant effect on patent market value.  Fig 3D&I reveal more complex patterns.  

According to Fig 3D, as a patent moves from having no novel references to having novel 

references, there is a sudden drop in patent citations.  As the average novelty further 

increases, patent citations rise and slowly reach a plateau (or even go down).  According to 

Fig 3I, there is a disruptive rise in patent market value when moving from having no novel 

references to having novel references.  However, as the average novelty further increases, 

patent market value decreases and slowly flattens (or even bounces up).  Taken together, 

these results suggest a structural change between patents building on novel science and those 

not.  As a patent builds on novel science, its technological impact drops, potentially due to 

uncertainties introduced by sourcing novel science.  Its technological impact then recovers 

and reaches a higher point than patents not building on novel science, indicating that sourcing 

more novel science leads to broader and more unexpected applications.  However, this 
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increasing trend does not continue unlimitedly, the benefit from sourcing novel science stops 

at certain level of average novelty.  Regarding patent market value, sourcing novel science 

brings a jump in the stock market reaction to the patented technology, reflecting market’s 

appreciation of novelty.  However, further increase in the novelty of sourced science reduces 

market value as the patent might become too remote from marketable applications. 

Consistent with our previous result that average scientific citations have an insignificant 

effect on patent citations but a positive effect on patent market value, Fig 3E exhibits no clear 

associations between scientific citations and patent citations, but only fluctuations around a 

flat line, and Fig 3J displays an increasing trend with some fluctuations.  Therefore, we 

conclude an insignificant effect of scientific citations on patent citations but a positive effect 

on patent market value.  This suggests that the criteria of usefulness might not be perfectly 

aligned between science and technology, scientific outputs that are (perceived) useful for 

others to do follow-on scientific research (i.e., receive more scientific citations) do not 

necessarily leads to technologies that are (perceived) useful for others to develop follow-on 

technologies (i.e., receive more patent citations).  On the other hand, there is neither a 

constriction between them as no significantly negative relation is observed.  Regarding patent 

market value, scientific outputs that are highly recognized by other scientists are positively 

associated with technologies that are highly appreciated by the stock market, reflecting a 

certain level of alignment between scientists’ interest and the market’s interest. 

 

7. Comparing patent in-text and front-page references 

Patent in-text and front-page references are generated through different processed and 

accordingly record different kinds of information (Bryan et al., 2020; Marx & Fuegi, 2022; 

Verberne et al., 2019).  Therefore, it is important to examine their differences and test 

whether findings regarding science-technologies are sensitive to which type of references are 

being analyzed.  We use the same subset of USPTO biotech patents, more specifically, the 

33,337 USPTO biotech patents and their 860,879 in-text references and 637,570 front-page 

references to WoS publications. 
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7.1. Reference comparison 

Figure 4 reports the overlap between in-text and front-page references.  In total, 173,281 

references appear both in the text and on the front page of the same patent, which accounts 

for only 20% of all in-text references and 27% of all front-page references.  This observed 

low overlap is consistent with prior observations (Bryan et al., 2020; Marx & Fuegi, 2022; 

Verberne et al., 2019). 

Figure 4.  Overlap between in-text and front-page references. 

 

A scientific paper can be cited by multiple patents.  The 1,325,168 total references are linked 

to 336,522 unique papers, the 860,879 in-text references are linked to 195,988 unique papers, 

and the 637,570 front-page references are linked to 245,852 unique papers.  Although in-text 

references have a larger volume (i.e., more paper-patent-links), they are linked to fewer 

unique papers, compared with front-page references.  In other words, in-text references are 

concentrated in a smaller set of papers than front-page ones.  In-text referenced papers are 

cited more often than front-page referenced papers.  On average, in-text referenced papers are 

cited by 5.4 patents in our sample in text or on front page, 4.4 patents in text, and 1.9 patents 

on front-page, and the corresponding numbers are 4.6, 2.7 and 2.6 for front-page referenced 

papers, respectively. 
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Figure 5.  Distribution of basicness, interdisciplinarity, novelty, and scientific citations, 

by in-text and front-page references.   

 

Plots for basicness and novelty are simple proportions by category.  Plots for interdisciplinarity and 

ln(Scientific citations +1) are kernel densities where the vertical lines mark the mean values.  

Scientific citations are logarithm transformed because it is highly skewed. 

 

We further assess the difference between in-text and front-page references in terms of their 

basicness, interdisciplinarity, novelty, and scientific citations.  Figure 5 plots the distributions 

of these four measures for in-text and front-page references separately.  Because the sample 

size is large, all the mean differences are highly significant (i.e., p<0.001) according to Welch 
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two sample t-tests and Wilcoxon rank sum tests, although the difference in interdisciplinarity 

and novelty seem very small in size.  Taken together, results show that in-text references are 

more basic and have more scientific citations than front-page references.  In-text references 

are less interdisciplinary but more novel than front-page references, but the differences are 

small.  This finding suggests that studies of which kinds of science is more cited by patents 

might be sensitive to whether the data come from patent in-text or front-page references. 

7.2. Patent level comparison 

Descriptive statistics for patent-level variables are reported in Table 13.  80.6% of our 

sampled patents have in-text scientific references, while 87.3% have front-page references.  

Among those with in-text references, they cite on average 32.0 scientific papers in-text.  

Among those with front-page references, they cite on average 21.9 papers on front-page.  

These differences are significant according to Wilcoxon matched-pairs signed-rank test at 

significance level of 0.05.  In the previous section, we have shown that in-text references 

have a larger volume but are concentrated in a smaller set of scientific papers.  It appears that 

in-text references are also concentrated in a smaller set of patents. 

 

Table 13.  Descriptive statistics (Unit of analysis: patent) 

 N Mean Std. Dev. Min Max 

In-text      

I(sNPR) 33,337 0.806 0.395 0 1 

sNPRs 26,872 32.036 43.005 1 711 

Avg(Basicness) 26,012 2.445 0.394 1 3 

Avg(Interdisciplinarity) 26,709 0.254 0.032 0.037 0.429 

Avg(Novelty) 26,872 0.155 0.157 0 1 

Avg(Scientific citations) 26,872 124.208 191.441 0 5871 

Front-page      

I(sNPR) 33,337 0.873 0.333 0 1 

sNPRs 29,110 21.902 31.368 1 1064 

Avg(Basicness) 27,999 2.401 0.435 1 3 

Avg(Interdisciplinarity) 28,982 0.256 0.037 0.023 0.419 

Avg(Novelty) 29,110 0.162 0.178 0 1 

Avg(Scientific citations) 29,110 62.580 88.399 0 5871 

 

Wilcoxon matched-pairs signed-rank tests also suggest that the average basicness and 

scientific citations of papers in a patent’s in-text references are significantly higher than that 
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of front-page references in the same patent, while there are no significant differences in 

average interdisciplinarity or novelty. 

Correlations between the variables based on in-text and front-page references are moderate.  

The Spearman correlation is 0.466 between whether having in-text references and whether 

having front-page references.  The correlations between two versions of variables (i.e., in-text 

and front-page) are 0.324, 0.602, 0.533, 0.261, and 0.430, for the number of referenced 

papers, average basicness, average interdisciplinarity, average novelty, and average scientific 

citations, respectively.  These moderate correlations suggest that, if we rank patents by their 

number of scientific references or the average basicness, interdisciplinarity, novelty, and 

scientific citations of their referenced scientific papers, using in-text and front-page 

references will produce rankings that are substantially different.  Furthermore, if we study the 

association between the characteristics of patents and the characteristics of their referenced 

scientific papers, we might come to different conclusions depending on whether in-text or 

front-page references are used. 

Figure 6 replicates results reported in Figure 3 based on patent in-text reference but used 

front-page references instead.  Analytical results are quite different. 
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Figure 6. Scientific references and patent value: Front-page vs. in-text.   

 

The light blue lines in this plot are identical to the blue lines in Figure 3.  They represent results based on in-text references.  We overlay them with the red 

lines (results based on front-page references) for an easier comparison.  Specifically, we repeat the same procedure for producing Figure 3 but use science 

measures based on patent front-page references instead. 
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7.3. Why do front-page and in-text references yield different results? 

The inconsistencies between the results based on front-page and in-text references are not 

surprising, considering their low overlap and the moderate correlations between science 

measures based on front-page and in-text references.  We then attempt to explore why such 

inconsistences emerge, by looking into the processes through which in-text and front-page 

references are generated.  As discussed before, in-text references document various sources of 

knowledge that are instrumental to the patented technology, while front-page references are 

listed for disclosing prior arts that are relevant for assessing patentability.  Sampat (2010) 

argued that, for patents that are expected to be more valuable, patent applicants may perform 

a more comprehensive prior art search, to prevent the chance that the patent application is 

rejected due to failure of disclosure.  This more comprehensive search may result in a longer 

list of front-page references.  Therefore, we view in-text references as an unbiased (but noisy) 

representation of the scientific outputs underlying a focal patented technology.  In 

comparison, front-page references also reflect this unbiased representation but are subject to 

additional biases introduced by patent applicants’ strategic behavior.  It is possible that certain 

types of scientific papers are valuable for inspiring the patented technology but not so 

relevant for assessing its patentability and therefore are not listed on the front page.  To 

explore this, we analyze individual in-text references and examine which types of in-text 

referenced papers are more likely to be listed on the front page of the same patent. 

Using in-text references (i.e., paper-patent-links) as the unit of analysis, we fit conditional 

fixed-effects logistic models, with patent fixed effects to account for patent heterogeneities.  

Regression results are reported in Table 14.  Column 1 shows that, for the same patent, 

among its in-text referenced papers, moderately basic papers have the highest chance of being 

listed on its front page, followed by highly basic, and lastly not basic papers.  Column 2 and 3 

show that more interdisciplinary and novel papers among the in-text referenced papers of the 

same patent are less likely to be listed on the front page of that patent.  In contrast, papers 

with more scientific citations have a higher chance of being listed on the front page of the 

same patent (Column 4). 
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Table 14. What types of in-text referenced papers are more likely to be listed on the 

patent front page? 

 I(Front-page) 

Conditional fixed-effects logit 

 (1) (2) (3) (4) 

Basicness=1 -

0.225*** 

(0.019) 

   

Basicness=2 0.106*** 

(0.009) 

   

Interdisciplinarity  -

0.638*** 

(0.077) 

  

Novelty   -0.025* 

(0.011) 

 

ln(Scientific citations +1)    0.065*** 

(0.003) 

Paper: Publication year Y Y Y Y 

Paper: Scientific field Y Y Y Y 

N obs 570408 634225 613065 655311 

N patents 15374 16217 16093 16394 

Unit of analysis: in-text references, i.e., paper-patent-links through in-text referencing.  All models 

incorporate patent fixed effects, so that estimates are about within-patent differences.  The dependent 

variable I(Front-page) is a binary variable: 1 if an in-text referenced paper is listed on the front page 

of the same patent, and 0 otherwise.  Each column reports one conditional fixed-effects logistic 

regression model.  For Column 1 we treat basicness as a categorical variable with three levels: 1, 2, 

and 3.  Level 3 is used as the reference group, so the coefficient reports the difference between a focal 

basicness group and the reference group.  For example, the coefficient of -0.225 means the log-odds 

of being listed on the front-page (vs. not being listed) is 0.225 smaller for patents that are not basic 

(Basicness =1) than for patents that are highly basic (Basicness = 3, the reference group).  Robust 

standard errors in parentheses.  *** p < .001, **p < .01, *p < .05, +p < .10. 

 

The inverted U-shaped relationship between basicness and the likelihood of being listed on 

patent front page is in line with the observed inverted U-shaped relationship between average 

basicness and patent value.  This means that a moderate level of basicness is not only 

positively associated with higher patent value but also higher degree of relevance for 

assessing patentability.  Both interdisciplinarity and novelty deviates from the existing 

paradigm, and their contribution to the patented technology might be rather unexpected.  

Therefore, their intellectual link to the patent is relatively distant and tenuous, and their 

relevance for assessing patentability is relatively low.  On the other hand, highly cited papers 

have generated more follow-on research and therefore is also possible to have more direct 

relevance for assessing patentability.  In addition, highly cited papers are more visible in both 

domains of science and technology, such that missing them would bring a higher risk of being 

rejected due to failure of disclosure.  Since front-page references systematically under-
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represent interdisciplinary and novel papers but over-represent moderately basic and highly 

cited papers.  We can expect that using front-page references will yield substantially different 

results than using in-text references when analyzing these science measures. 

 

8. Conclusion and deliverables 

This project aimed to (1) develop a high-performing machine learning method to extract 

patent in-text references and then match them to the Web of Science database of scientific 

publications, (2) implement this method to EPO and USPTO patents to create a large-scale 

dataset linking patents to publications, and (3) uncover what kinds of science lead to more 

valuable patents and how in-text references are different from front-page references. 

We developed a three-stage pipeline for extracting and matching patent in-text references and 

accomplished high performance (precision = 96.8% and recall of 91.9%).  We implemented 

the pipeline to full texts of EPO and USPTO patents granted between 1990 and 2022.  From 

492,469 EPO patents we identified 5,438,836 references and matched 2,763,779 (51%) 

references to WoS publications.  From 1,449,398 USPTO patents we identified 20,432,189 

references and matched 11,069,995 (54%) references to WoS publications. 

We uncovered the relationship between patent value and science basicness, interdisciplinarity, 

novelty, and scientific citations, as well as differences between patent in-text and front-page 

references. 

This project produced the following deliverables: 

• A large-scale dataset linking EPO and USPTO patents to WoS publications. 

• A training dataset for future text-mining tasks. 

• A methodology paper about the pipeline. 

• A scientific paper about science-technology linkages. 
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