EXAMEN EUROPÉEN DE QUALIFICATION 2024

Épreuve A

Cette épreuve contient :

* Lettre du client 2024/A/FR/1-6
* Dessins du client 2024/A/FR/7-8
* Document D1 2024/A/FR/9-10
* Document D2 2024/A/FR/11-14
Inhalt (6 Seiten „Schreiben des Mandanten“) nur auf dem Bildschirm während der Prüfung verfügbar

Content (6 pages „Client's letter“) only available on screen during the examination

Contentu (6 pages „Lettre du client“) uniquement visible sue l'écran pendant l'examen
Dessins du client

FIG. 1a

Invention

FIG. 1b

FIG. 1c
L'art antérieur D1

Extrait d'un glossaire pétrolier

Traitement acide

[001] Le traitement acide d'un puits peut servir à éliminer les débris qui perturbent l'écoulement de fluide dans le puits. Un récipient sous pression est déployé dans la cavité du puits et entraîne un piston pour délivrer de l'acide dans le puits. Voir les figures 1a et 1b qui représentent un dispositif D' à l'intérieur d'un puits W dans une formation rocheuse R, le puits W ayant une enveloppe métallique C.

[002] Le dispositif D' est de forme cylindrique, comme représenté sur la figure 1b. La figure 1a représente la coupe X prise à travers le dispositif de forme cylindrique D'. Le dispositif D' comprend un récipient 1, compartimenté et étanchéifié par un piston mobile 4 pour former un réservoir à acide 2 et un réservoir à gaz à très haute pression 3. Pour délivrer l'acide du réservoir 2 dans le puits W, une soupape 9 est ouverte et le gaz à très haute pression dans le réservoir 3 entraîne la tête du piston 4 vers une buse 5, expulsant ainsi l'acide de l'intérieur du récipient 1 à travers la soupape 9 et la buse 5 vers l'extérieur du récipient 1 et ainsi dans le puits. Ce dispositif peut être utilisé pour éliminer les solides qui bloquent les trajets d'écoulement dans le puits.
FIG. 1a (art antérieur)

FIG. 1b
D2 Description

[001] La figure 1a est un appareil à turbine pour produire de l'électricité dans un puits. Les émetteurs de données dans un puits nécessitent de l'électricité. Bien que des batteries puissent être utilisées, celles-ci se détériorent rapidement en raison des températures élevées souvent trouvées dans les puits. Nous proposons plutôt un dispositif de turbine D" sous la forme d'un récipient cylindrique 101 ayant un premier réservoir d'entraînement 121, un deuxième réservoir à liquide 122 et un troisième réservoir à basse pression 123 pour le gaz. Le réservoir d'entraînement 121 est ouvert sur le puits environnant via une ouverture 119 qui peut être de n'importe quelle taille.

[002] Un piston 114, 115 se déplace dans le récipient 101 en fonction des pressions relatives qui agissent dessus. La tête du piston 114 sépare le réservoir d'entraînement 121 du réservoir contenant le liquide 122 et les étanchéifie l'un par rapport à l'autre.

[003] Un disque statique 117 délimite de manière générale le deuxième réservoir à liquide 122 par rapport au troisième réservoir basse pression 123, mais comporte un col 142 avec une soupape 143 qui relie le deuxième réservoir à liquide 122 et le troisième réservoir basse pression 123 pour le gaz lorsque la soupape 143 est ouverte et qui les étanchéifie l'un par rapport à l'autre lorsque la soupape 143 est fermée. Le col 142 comprend également une turbine 141 avec des pales de turbine.

[004] Avant déploiement, nous évacuons le réservoir basse pression pour qu'il soit à une pression de 0,5 atmosphère (50 kPa). Pour un résultat avantageux, la pression à la profondeur de déploiement dans le puits devrait être au moins 8 fois la pression atmosphérique (800 kPa).

[005] Lorsque de l'électricité est requise, la soupape 143 est ouverte et la pression environnante élevée du puits, comparée à la pression bien inférieure dans le réservoir basse pression 123 pour le gaz, entraîne le piston 114 vers le bas et le fluide à travers la turbine 141 et la soupape 143. La rotation de turbine qui en résulte génère de l'électricité, qui peut être stockée par un condensateur 146 et utilisée selon les besoins par un émetteur 145 pour renvoyer des signaux à la surface.

2024/A/FR/11
Le piston 114, 115 continue vers le bas en direction de la turbine 141 jusqu'à ce qu'une commande mécanique sous la forme d'une tige 115 s'étende entre les pales de turbine pour arrêter leur rotation et empêcher la décharge-retour du condensateur 146 vers la turbine 141. La tige 115 ensuite à travers la soupape 143 dans le réservoir basse pression 123 pour le gaz afin de garantir qu'elle reste ouverte lorsque l'appareil est retiré ultérieurement du puits. La figure 1b représente la tige 115 entre les pales de la turbine 141 dans le col 142. La tête du piston 114 vient finalement en butée contre le col, comme représenté sur la figure 1b. La tige doit avoir un diamètre inférieur à 7 cm pour passer à travers la soupape et entre les pales de turbine.

L'appareil est alors épuisé et ne peut plus produire d'électricité. Il peut être récupéré à la surface. Lorsqu'il est épuisé, l'appareil peut encore renfermer des fluides à une pression élevée similaire à celle à laquelle il fonctionnait dans le puits. Pendant la récupération de l'appareil à la surface, la pression environnante du puits est plus basse à des profondeurs moins importantes et encore plus basse à la surface. La manipulation de récipients haute pression à la surface est dangereuse. Par conséquent, pendant le transit hors du puits, une soupape 129 peut être ouverte pour permettre aux fluides d'être expulsés du récipient et réduire la pression interne lorsqu'il passe à travers les parties à plus basse pression/moins profondes du puits.

Grâce au montage lâche de la tige 115 dans le col 142, l'ancien réservoir basse pression 123 pour le gaz peut également se dépressuriser en passant la soupape 143 et la turbine 141 dans le col 142.

Le liquide utilisé dans le réservoir à liquide 122 peut être de l'huile, de l'eau, de la saumure ou un acide.

Dans un autre mode de réalisation, une soupape de commande peut être prévue à la place de l'ouverture 119 pour commander l'entrée de fluide dans le réservoir d' entraînement 121.

L'appareil à turbine peut être utilisé dans différents puits, par exemple des puits de production, des puits d'injection ou des puits géothermiques.